an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU


  • Oscar Sosa - University Grenoble Alpes, France
  • Sylvie Valin - University Grenoble Alpes, France
  • Sébastien Thiery - University Grenoble Alpes, France
  • Sylvain Salvador - Centre RAPSODEE, France

Released under CC BY-NC-ND

Copyright: © 2021 CISA Publisher


The present study investigates the thermochemical conversion of Solid Recovered Fuel (SRF), represented by selected “model materials”. A laboratory-scale induction heated device was specifically developed to achieve fast pyrolysis conditions close to those encountered in a fluidized bed reactor. The novel device can handle up to 5 grams of solid, allowing fast heating rates (near 70°C/s) and a homogeneous distribution of temperature all along the reactor. Pyrolysis tests of a SRF sample and four model materials (Polyethylene, Polyethylene Terephthalate, beech wood, cardboard) were performed at 800°C. The yield and composition of the produced gas for each sample were determined. Experimental results will help to elucidate the relation between the initial components of waste derived fuels and the obtained reaction products.


Editorial History

  • Received: 22 Feb 2021
  • Revised: 22 Apr 2021
  • Accepted: 17 May 2021
  • Available online: 30 Jun 2021


Al-Salem, S. M., Antelava, A., Constantinou, A., Manos, G., & Dutta, A. (2017). A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). Journal of Environmental Management, 197, 177–198.
DOI 10.1016/j.jenvman.2017.03.084

Blanco, P. H., Wu, C., Onwudili, J. A., & Williams, P. T. (2012). Characterization of Tar from the Pyrolysis/Gasification of Refuse Derived Fuel: Influence of Process Parameters and Catalysis. Energy & Fuels, 26(4), 2107–2115.
DOI 10.1021/ef300031j

Block, C., Ephraim, A., Weiss-Hortala, E., Minh, D. P., Nzihou, A., & Vandecasteele, C. (2019). Co-pyrogasification of Plastics and Biomass, a Review. Waste and Biomass Valorization, 10(3), 483–509.
DOI 10.1007/s12649-018-0219-8

Centi, G., & Perathoner, S. (2020). Chemistry and energy beyond fossil fuels. A perspective view on the role of syngas from waste sources. Catalysis Today, 342, 4–12.
DOI 10.1016/j.cattod.2019.04.003

Chhabra, V., Bambery, K., Bhattacharya, S., & Shastri, Y. (2020). Thermal and in situ infrared analysis to characterise the slow pyrolysis of mixed municipal solid waste (MSW) and its components. Renewable Energy, 148, 388–401.
DOI 10.1016/j.renene.2019.10.045

Cortazar, M., Lopez, G., Alvarez, J., Arregi, A., Amutio, M., Bilbao, J., & Olazar, M. (2020). Experimental study and modeling of biomass char gasification kinetics in a novel thermogravimetric flow reactor. Chemical Engineering Journal, 396, 125200.
DOI 10.1016/j.cej.2020.125200

Daouk, E., Sani, R., Pham Minh, D., & Nzihou, A. (2018). Thermo-conversion of Solid Recovered Fuels under inert and oxidative atmospheres: Gas composition and chlorine distribution. Fuel, 225, 54–61.
DOI 10.1016/j.fuel.2018.03.136

Devi, L., Ptasinski, K. J., Janssen, F. J. J. G., van Paasen, S. V. B., Bergman, P. C. A., & Kiel, J. H. A. (2005). Catalytic decomposition of biomass tars: Use of dolomite and untreated olivine. Renewable Energy, 30(4), 565–587.
DOI 10.1016/j.renene.2004.07.014

Efika, C. E., Onwudili, J. A., & Williams, P. T. (2018). Influence of heating rates on the products of high-temperature pyrolysis of waste wood pellets and biomass model compounds. Waste Management, 76, 497–506.
DOI 10.1016/j.wasman.2018.03.021

Efika, E. C., Onwudili, J. A., & Williams, P. T. (2015). Products from the high temperature pyrolysis of RDF at slow and rapid heating rates. Journal of Analytical and Applied Pyrolysis, 112, 14–22.
DOI 10.1016/j.jaap.2015.01.004

Esmaeili, V., Ajalli, J., Faramarzi, A., Abdi, M., & Gholizadeh, M. (2020). Gasification of wastes: The impact of the feedstock type and co-gasification on the formation of volatiles and char. International Journal of Energy Research, n/a(n/a), Article n/a.
DOI 10.1002/er.5121

Garcés, D., Díaz, E., Sastre, H., Ordóñez, S., & González-LaFuente, J. M. (2016). Evaluation of the potential of different high calorific waste fractions for the preparation of solid recovered fuels. Waste Management, 47, 164–173.
DOI 10.1016/j.wasman.2015.08.029

Honus, S., Kumagai, S., Fedorko, G., Molnár, V., & Yoshioka, T. (2018). Pyrolysis gases produced from individual and mixed PE, PP, PS, PVC, and PET—Part I: Production and physical properties. Fuel, 221, 346–360.
DOI 10.1016/j.fuel.2018.02.074

Hwang, I.-H., Kobayashi, J., & Kawamoto, K. (2014). Characterization of products obtained from pyrolysis and steam gasification of wood waste, RDF, and RPF. Waste Management, 34(2), 402–410.
DOI 10.1016/j.wasman.2013.10.009

Kaza, S., Yao, L., Bhada-Tata, P., & Van Woerden, F. (2018). What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. The World Bank.
DOI 10.1596/978-1-4648-1329-0

Marshall, A. J., Wu, P. F., Mun, S.-H., & Lalonde, C. (2014). Commercial application of pyrolysis technology in agriculture. American Society of Agricultural and Biological Engineers Annual International Meeting 2014, ASABE 2014, 5, 3868–3886

Meng, A., Chen, S., Long, Y., Zhou, H., Zhang, Y., & Li, Q. (2015). Pyrolysis and gasification of typical components in wastes with macro-TGA. Waste Management, 46, 247–256.
DOI 10.1016/j.wasman.2015.08.025

Mishra, H., Patidar, B., Pante, A. S., & Sharma, A. (2019). Mathematical modelling, simulation and experimental validation of resistance heating and induction heating techniques for E-waste treatment. IET Electric Power Applications, 13(4), 487–493.
DOI 10.1049/iet-epa.2018.5535

Muley, P. D., Henkel, C., Abdollahi, K. K., Marculescu, C., & Boldor, D. (2016). A critical comparison of pyrolysis of cellulose, lignin, and pine sawdust using an induction heating reactor. Energy Conversion and Management, 117, 273–280.
DOI 10.1016/j.enconman.2016.03.041

Pasel, C., & Wanzl, W. (2003). Experimental investigations on reactor scale-up and optimisation of product quality in pyrolysis of shredder waste. Fuel Processing Technology, 80(1), 47–67.
DOI 10.1016/S0378-3820(02)00187-X

Runchal, A. K., Gupta, A. K., Kushari, A., De, A., & Aggarwal, S. K. (2018). Energy for Propulsion A Sustainable Technologies Approach. Springer Singapore : Imprint: Springer.

Saghir, M., Rehan, M., & Nizami, A.-S. (2018). Recent Trends in Gasification Based Waste-to-Energy. In Y. Yun (Ed.), Gasification for Low-grade Feedstock. InTech.
DOI 10.5772/intechopen.74487

Solid Recovered Fuels: Specification and Classes: CEN/TS 15359 Technical Specification : English Version. (2006). European Committee for Standarization

Wilk, V., & Hofbauer, H. (2013). Conversion of mixed plastic wastes in a dual fluidized bed steam gasifier. Fuel, 107, 787–799.
DOI 10.1016/j.fuel.2013.01.068

Win, M. M., Asari, M., Hayakawa, R., Hosoda, H., Yano, J., & Sakai, S.-I. (2020). Gas and tar generation behavior during flash pyrolysis of wood pellet and plastic. Journal of Material Cycles and Waste Management, 22(2), 547–555.
DOI 10.1007/s10163-019-00949-8

Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12), 1781–1788.
DOI 10.1016/j.fuel.2006.12.013

Zaccariello, L., & Mastellone, M. L. (2015). Fluidized-Bed Gasification of Plastic Waste, Wood, and Their Blends with Coal. Energies, 8(8), 8052–8068.
DOI 10.3390/en8088052

Zaini, I. N., García López, C., Pretz, T., Yang, W., & Jönsson, P. G. (2019). Characterization of pyrolysis products of high-ash excavated-waste and its char gasification reactivity and kinetics under a steam atmosphere. Waste Management, 97, 149–163.
DOI 10.1016/j.wasman.2019.08.001

Zhou, H., Long, Y., Meng, A., Li, Q., & Zhang, Y. (2015). Thermogravimetric characteristics of typical municipal solid waste fractions during co-pyrolysis. Waste Management, 38, 194–200.
DOI 10.1016/j.wasman.2014.09.027

Zhou, H., Wu, C., Onwudili, J. A., Meng, A., Zhang, Y., & Williams, P. T. (2015). Polycyclic aromatic hydrocarbons (PAH) formation from the pyrolysis of different municipal solid waste fractions. Waste Management, 36, 136–146.
DOI 10.1016/j.wasman.2014.09.014