an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU


  • Petra Innemanová - Institute for Environmental Studies, Faculty of Science, Charles University, Czech Republic - DEKONTA a.s., Czech Republic
  • Alena Grasserová - Institute for Environmental Studies, Faculty of Science, Charles University, Czech Republic - Institute of Microbiology Czech Academy of Sciences, Czech Republic
  • Tomáš Cajthaml - Institute for Environmental Studies, Faculty of Science, Charles University, Czech Republic - Institute of Microbiology Czech Academy of Sciences, Czech Republic

Released under CC BY-NC-ND

Copyright: © 2021 CISA Publisher


The transformation of dewatered sewage sludge into vermicompost provides an advantageous solution in cases where the sludge is not too contaminated with inorganic pollutants, especially heavy metals. In addition to the conversion of the sludge to a product with a higher-added value, undesirable organic pollutants and micropollutants are partially eliminated. Anaerobically stabilized dewatered sewage sludge from a medium-sized WWTP was subjected to the vermicomposting process under field conditions. Straw was used as the bedding material in the form of two mixing ratios. The almost 1 year of the monitoring of the process focused on the hazardous substances present, the concentrations of which are regulated by legislation on the use of sludge on agricultural land. In addition, the contents of macro- and micro-nutrients such as N, P, K, Mo, Ca, Mg, and the wintering of the earthworm inocula were monitored. The potential of the vermicomposting process to reduce the content of emergent pollutants from the PPCP group was described with respect to 34 detected substances, including five endocrine disruptors. The study suggested that the bio-stabilization of dewatered sewage sludge using earthworms provides an effective technology for converting noxious wastewater treatment products into nutrient-rich bio-fertilizers.


Editorial History

  • Received: 15 Dec 2021
  • Revised: 17 Feb 2022
  • Accepted: 09 Mar 2022
  • Available online: 31 Mar 2022


Amir, S., Hafidi, M., Merlina, G., Hamdi, H., Revel, J.C. 2005. Fate of polycyclic aromatic hydrocarbons during composting of lagooning sewage sludge. Chemosphere 58(4). 449-458.
DOI 10.1016/j.chemosphere.2004.09.039

Bhat, S. A., Singh, J., Vig, A.P. 2016. Effect on growth of earthworm and chemical parameters during vermicomposting of pressumd sludge mixed with cattle dung mixture. Procedia Environmental Sciences 35. 425-434.
DOI 10.1016/j.proenv.2016.07.025

Chowdhury, S.D., Surampalli, R.Y., Bhunia, P. 2022. Potential of the constructed wetlands and the earthworm-based treatment technologies to remove the emerging contaminants: A review. J hazard Toxic radioact Waste 26(2). 04021066.
DOI 10.1061/(ASCE)HZ.2153-5515.0000668

Covino, S., Fabianová, T., Křesinová, Z., Čvančarová, M., Burianová, E., Filipová, A., Vořísková, J., Baldrian, P., Cajthaml, T. 2016. Polycyclic aromatic hydrocarbons degradation and microbial community shifts during co-composting of creosote-treated wood. J Hazard Mater. 301(15). 17-26.
DOI 10.1016/j.jhazmat.2015.08.023

Domínguez, J., Edwards, C., A. 1997. Effects of stocking rate and moisture content on the growth and maturation of Eisenia andrei (Oligochaeta) in pig manure. Soil Biol Biochem. 29(3/4). 743-746.
DOI 10.1016/S0038-0717(96)00276-3

Domínguez, J., Edwards, C., A. 2011. Relationships between composting and vermicomposting. In: Vermiculture Technology (Eds Edwards C.A., Arancon N.Q., Sherman R.), Boca Raton: CRC Press, Taylor & Francis Group, 11-25

Garg, V. K., Gupta, R., Yadav, A. 2008. Potential of vermicomposting technology in solid waste management. In: Pandey A et al (ed) Current developments in solid state fermentation. Asia-Tech. Publishers Inc. New Delhi. 468-511.
DOI 10.1007/978-0-387-75213-6_20

Gupta, R., Garg, V.K. 2008. Stabilization of primary sewage sludge during vermicomposting. J Hazard Mater. 153(3). 1023-1030.
DOI 10.1016/j.jhazmat.2007.09.055

Champar-Ngam, N., Iwai, C.B., Ta-oun, M. 2010. Vermicompost: tool for agro-industrial waste management and sustainable agriculture. IJERD. 1-2. 38-43

Khakbaz, A., De Nobili, M., Mainardis, M., Contin, M., Aneggi, E., Mattiussi, M., Cabras, I., Busut M., Goi, D. 2020. Monitoring of heavy metals, EOX and LAS in sewage sludge for agricultural use: a case study. Detritus Journal, 12-2020.160-168.
DOI 10.31025/2611-4135/2020.13993

Khwairakpam, M., Bhargava, R. 2009. Vermitechnology for sewage sludge recycling. J Hazard Mater 161. 948-954.
DOI 10.1016/j.jhazmat.2008.04.088

Kilpi-Koski, J., Penttinen, OP., Väisänen, A.O., van Gestel, C.A.M. 2019. An uptake and elimination kinetics approach to assess the bioavailability of chromium, copper, and arsenic to earthworms (Eisenia andrei) in contaminated field soils. Environ Sci Pollut Res 26. 15095–15104.
DOI 10.1007/s11356-019-04908-6

Latare, A.M., Kumar, O., Singh, S.K., Gupta, A. 2014. Direct and residual effect of sewage sludge on yield, heavy metals content and soil fertility under rice-wheat system. Ecol. Eng. 69. 17-24.
DOI 10.1016/j.ecoleng.2014.03.066

Ministry of the environment of the Czech Republic. 2021. Vyhláška č. 273/2021 Sb., vyhláška o podrobnostech nakládání s odpady. In: Sbírka zákonů ČR, volume 2021, Number 273.

Parseh, I., Mousavi, K., Badieenejad, A., Golbini Mofrad, M.M., Hashemi, M., Azadbakht, O., Karimi, H. 2021. Microbial and composition changes during vermicomposting process resulting from decomposable domestic waste, cow manure and dewatered sludge. Int J Env Health Eng 10:3.
DOI 10.4103/ijehe.ijehe_56_20

Procházková, P., Hanč, A., Dvořák, J., Roubalová, R., Drešlová, M., Částková, T., Šustr, V., Škanta, F., Navarro Pacheco, N.I., Bilej, M. 2018. Contribution of Eisenia andrei earthworms in pathogen reduction during vermicomposting. Environ Sci Pollut R 25. 26267-26278

Rizzardini, C.B., Goi, D. 2014. Sustainability of domestic sewage sludge disposal. Sustainability 2014. 6(5). 2424-2434.
DOI 10.3390/su6052424

Rorat, A., Wloka, D., Grobelak, A., Grosser, A.S., Milczarek, M., Jelonek, P., Vandenbulcke, F., Kacprzak, M. 2017. Vermiremediation of polycyclic aromatic hydrocarbons and heavy metals in sewage sludge composting process. J Environ Manage 187. 347-353.
DOI 10.1016/j.jenvman.2016.10.062

Sinha, R.K., Herat, S., Bharambe, G., Brahambhatt, A. 2010. Vermistabilization of sewage sludge (biosolids) by earthworms: converting a potential biohazard destined for landfill disposal into a pathogen-free, nutritive and safe biofertilizer for farms. Waste Manage Res 2010:28. 872-881

Shanta Mendis, A. S., Dunuweera, S.P., Walpolage, S. & Gamini Rajapakse, R. M. (2020). Conversion of biological treatment plant sludge to organic fertilizer for applications in organic farming. Detritus Journal, 9-2020. 83-93.
DOI 10.31025/2611-4135/2020.13899

Suleiman, H., Rorat, A., Grobelak, A., Grosser, A., Milczarek, M., Plytycz, B., Kacprzak, M., Vandebulcke, F. 2017. Determination of the performance of vermicomposting process applied to sewage sludge by monitoring of the compost quality and immune responses in three earthworm species: Eisenia fetida, Eisenia andrei and Dendrobaena veneta. Bioresource Technol 241. 103-112.
DOI 10.1016/j.biortech.2017.05.104

Tognetti, C., Laos, F., Mazzarino, M.J., Hernández, M.T. 2005. Composting vs. Vermicomposting: A Comparison of End Product Quality, Compost Sci Util, 13:1. 6-13.
DOI 10.1080/1065657X.2005.10702212

Wang, K., Qiao, Y., Zhang, H., Yue, S., Li, H., Ji, X., Liu, L. 2018. Bioaccumulation of heavy metals in earthworms from firld contaminated soil in a subtropical aera of China. Ecotox Environ Safe 148. 876-883.
DOI 10.1016/j.ecoenv.2017.11.058

Zhang, H., Li, J., Zhang, Y., Huang, K. 2020. Quality of vermicompost and microbial community deversity affected by the contrasting temperature during vermicomposting of dewatered sludge. Int J Environ Res Public Health 17(5). 1748.
DOI 10.3390/ijerph17051748