an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU


  • Priscila Silva Silveira Camargo - Department of Materials Engineering, Federal University of Rio Grande do Sul (UFRGS), Brazil
  • Andrey da Silva Domingues - Department of Materials Engineering, Federal University of Rio Grande do Sul (UFRGS), Brazil
  • João Pedro Guê Palomero - Department of Materials Engineering, Federal University of Rio Grande do Sul (UFRGS), Brazil
  • Angela Cristina Kasper - Department of Materials Engineering, Federal University of Rio Grande do Sul (UFRGS), Brazil
  • Pablo Ribeiro Dias - School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Australia
  • Hugo M. Veit - Department of Materials Engineering, Federal University of Rio Grande do Sul (UFRGS), Brazil


Released under CC BY-NC-ND

Copyright: © 2021 CISA Publisher


ABSTRACT: This work investigated the thermal treatment to separate and concentrate economically valuable materials from laminates of crystalline silicon photovoltaic modules (i.e., photovoltaic modules without the aluminum frame and the junction box). Chemical characterization of the metal content was performed by X-Ray Fluorescence (XRF). The polymers of the backsheet were also characterized by Fourier Transform Infrared Spectroscopy (FTIR). The influence of the atmosphere (oxidizing and inert) on the decomposition of the backsheet was investigated by Thermogravimetric Analysis (TGA). Moreover, non-comminuted samples were tested for 4 thermal time lengths (30, 60, 90, and 120 min) in the furnace under ambient air. The degradation of the polymers was measured and 3 material fractions were obtained: silicon with silver and residual polymers (SS), glass and copper ribbons. Furthermore, there was no statistical difference between the mass losses of the samples submitted for 90 (13.62 ± 0.02 wt.%) and 120 min at 500 °C (p-value = 0.062). In the SS fraction, silver was 20 times more concentrated than in the ground photovoltaic laminate and 30 times more concentrated than high silver concentration ores. The SS fraction (about 6 wt.%) also presented low copper concentration and a high concentration of lead (hazardous metal). About 79 wt.% glass was obtained, as well as 1% copper ribbons (55.69 ± 6.39% copper, 23.17 ± 7.51% lead, 16.06 ± 2.12% tin). The limitations of the treatment and its environmental impact are discussed, and suggestions for industrial-scale application are given.


Editorial History

  • Received: 01 Mar 2021
  • Revised: 01 Jul 2021
  • Accepted: 26 Jul 2021
  • Available online: 30 Sep 2021


Adothu, B., Bhatt, P., Zele, S., Oderkerk, J., Costa, F. R., & Mallick, S. (2020). Investigation of newly developed thermoplastic polyolefin encapsulant principle properties for the c-Si PV module application. Materials Chemistry and Physics, 243(January), 122660.
DOI 10.1016/j.matchemphys.2020.122660

Aryan, V., Font-Brucart, M., & Maga, D. (2018). A comparative life cycle assessment of end-of-life treatment pathways for photovoltaic backsheets. Progress in Photovoltaics: Research and Applications, 26(7), 443–459.
DOI 10.1002/pip.3003

Bernardes, A. M., Espinosa, D. C. R., & Tenório, J. A. S. (2004). Recycling of batteries: A review of current processes and technologies. Journal of Power Sources, 130(1–2), 291–298.
DOI 10.1016/j.jpowsour.2003.12.026

BioIS. (2011). Study on photovoltaic panels supplementing the impact assessment for a recast of the WEEE directive – Final report. (Issue April). on PVs Bio final.pdf

Callegari-Jacques, S. M. (2003). Bioestatística: Princípios e aplicações. Artmed

Cenci, M. P., Christ, F., Berto, D., Silva, P., Camargo, S., & Veit, H. M. (2021). Separation and concentration of valuable and critical materials from wasted LEDs by physical processes. Waste Management, 120, 136–145.
DOI 10.1016/j.wasman.2020.11.023

Chancerel, P., Meskers, C. E. M., Hagelüken, C., & Rotter, V. S. (2009). Assessment of Precious Metal Flows During Preprocessing of Waste Electrical and Electronic Equipment. Journal of Industrial Ecology, 13(5), 791–810.
DOI 10.1111/j.1530-9290.2009.00171.x

Danz, P., Aryan, V., Möhle, E., & Nowara, N. (2019). Experimental Study on Fluorine Release from Photovoltaic Backsheet Materials Containing PVF and PVDF during Pyrolysis and Incineration in a Technical Lab-Scale Reactor at Various Temperatures. Toxics, 7(3), 47.
DOI 10.3390/toxics7030047

DeBergalis, M. (2004). Fluoropolymer films in the photovoltaic industry. Journal of Fluorine Chemistry, 125(8), 1255–1257.
DOI 10.1016/j.jfluchem.2004.05.013

Deng, R., Chang, N. L., Ouyang, Z., & Chong, C. M. (2019). A techno-economic review of silicon photovoltaic module recycling. Renewable and Sustainable Energy Reviews, 109(March), 532–550.
DOI 10.1016/j.rser.2019.04.020

Deng, R., Chang, N., Lunardi, M. M., Dias, P., Bilbao, J., Ji, J., & Chong, C. M. (2020). Remanufacturing end‐of‐life silicon photovoltaics: Feasibility and viability analysis. Progress in Photovoltaics: Research and Applications, pip.3376.
DOI 10.1002/pip.3376

Dias, P., Javimczik, S., Benevit, M., Veit, H., & Bernardes, A. M. (2016). Recycling WEEE: Extraction and concentration of silver from waste crystalline silicon photovoltaic modules. Waste Management, 57, 220–225.
DOI 10.1016/j.wasman.2016.03.016

Dias, P. R., Javimczik, S., Benevit, M., & Veit, H. (2017). Recycling WEEE: Polymer characterization and pyrolysis study for waste of crystalline silicon photovoltaic modules. Waste Management, 60, 716–722.
DOI 10.1016/j.wasman.2016.08.036

Dias, P., Schmidt, L., Gomes, L. B., Bettanin, A., Veit, H., & Bernardes, A. M. (2018). Recycling Waste Crystalline Silicon Photovoltaic Modules by Electrostatic Separation. Journal of Sustainable Metallurgy, 4(2), 176–186.
DOI 10.1007/s40831-018-0173-5

Drobny, J. G. (2001). Technology of fluoropolymers. CRC Press

Farrell, C., Osman, A. I., Zhang, X., Murphy, A., Doherty, R., Morgan, K., Rooney, D. W., Harrison, J., Coulter, R., & Shen, D. (2019). Assessment of the energy recovery potential of waste Photovoltaic ( PV ) modules. Scientific Reports, 9(March), 1–13.
DOI 10.1038/s41598-019-41762-5

Fiandra, V., Sannino, L., Andreozzi, C., Corcelli, F., & Graditi, G. (2019). Silicon photovoltaic modules at end-of-life: Removal of polymeric layers and separation of materials. Waste Management, 87, 97–107.
DOI 10.1016/j.wasman.2019.02.004

Fiandra, V., Sannino, L., Andreozzi, C., & Graditi, G. (2018). End-of-life of silicon PV panels: A sustainable materials recovery process. Waste Management, 84, 91–101.
DOI 10.1016/j.wasman.2018.11.035

Fthenakis, V. M. (2000). End-of-life management and recycling of PV modules. Energy Policy, 28(14), 1051–1058.
DOI 10.1016/S0301-4215(00)00091-4

Granata, G., Pagnanelli, F., Moscardini, E., Havlik, T., & Toro, L. (2014). Recycling of photovoltaic panels by physical operations. Solar Energy Materials and Solar Cells, 123(2014), 239–248.
DOI 10.1016/j.solmat.2014.01.012

Granata, Giuseppe, Moscardini, E., Pagnanelli, F., Trabucco, F., & Toro, L. (2012). Product recovery from Li-ion battery wastes coming from an industrial pre-treatment plant: Lab scale tests and process simulations. Journal of Power Sources, 206, 393–401.
DOI 10.1016/j.jpowsour.2012.01.115

Gustavsson, J. P. R., Segal, C., Dolbier, W. R., Ameduri, B., & Kostov, G. (2006). Combustion and thermal decomposition of fluorinated polymers. Combustion Science and Technology, 178(12), 2097–2114.
DOI 10.1080/00102200600860681

Hoffman, J. I. E. (2019). Analysis of Variance. I. One-Way. In Basic Biostatistics for Medical and Biomedical Practitioners (pp. 391–417). Elsevier.
DOI 10.1016/B978-0-12-817084-7.00025-5

Huang, W.-H. H., Shin, W. J., Wang, L., Sun, W.-C. C., & Tao, M. (2017). Strategy and technology to recycle wafer-silicon solar modules. Solar Energy, 144, 22–31.
DOI 10.1016/j.solener.2017.01.001

Huber, S., Moe, M., Schmidbauer, N., Hansen, G., & Herzke, D. (2009). Emissions from the incineration of fluoropolymer materials. Nilu

Insider. (2021). Copper price on Feb 26, 2021.

IRENA. (2021a). Distribution of renewable energy technologies within a country, area or region of choice in relation to renewable energy power capacity and electricity generation figures.

IRENA. (2021b). International Renewable Energy Agency - Statistics Time Series :Trends in Capacity and Generation of Renewable Energy:Trends in Capacity and Generation of Renewable Energy.

ISE. (2020). Photovoltaics Report - Prepared by Fraunhofer Institute for Solar Energy Systems, ISE with support of PSE Projects GmbH (Issue September).

Jung, B., Park, J., Seo, D., & Park, N. (2016). Sustainable System for Raw-Metal Recovery from Crystalline Silicon Solar Panels: From Noble-Metal Extraction to Lead Removal. ACS Sustainable Chemistry and Engineering, 4(8), 4079–4083.
DOI 10.1021/acssuschemeng.6b00894

Kadro, J. M., & Hagfeldt, A. (2017). The End-of-Life of Perovskite PV. Joule, 1(1), 29–46.
DOI 10.1016/j.joule.2017.07.013

Kasper, A. C. (2011). Characterization and recycling of materials present in cell phone scraps. Caracterização e reciclagem de materiais presentes em sucatas de telefones celulares. UFRGS

Klugmann-Radziemska, E., & Ostrowski, P. (2010). Chemical treatment of crystalline silicon solar cells as a method of recovering pure silicon from photovoltaic modules. Renewable Energy, 35(8), 1751–1759.
DOI 10.1016/j.renene.2009.11.031

Klugmann-Radziemska, E., Ostrowski, P., Drabczyk, K., Panek, P., & Szkodo, M. (2010). Experimental validation of crystalline silicon solar cells recycling by thermal and chemical methods. Solar Energy Materials and Solar Cells, 94(12), 2275–2282.
DOI 10.1016/j.solmat.2010.07.025

Koenig, J. L., & Mannion, J. J. (1966). Infrared study of poly(vinyl fluoride). Journal of Polymer Science Part A-2: Polymer Physics, 4(3), 401–414.
DOI 10.1002/pol.1966.160040310

Kuczyńska-Łażewska, A., Klugmann-Radziemska, E., Sobczak, Z., & Klimczuk, T. (2018). Recovery of silver metallization from damaged silicon cells. Solar Energy Materials and Solar Cells, 176(December 2017), 190–195.
DOI 10.1016/j.solmat.2017.12.004

Latunussa, C. E. L., Ardente, F., Blengini, G. A., & Mancini, L. (2016). Life Cycle Assessment of an innovative recycling process for crystalline silicon photovoltaic panels. Solar Energy Materials and Solar Cells, 156, 101–111.
DOI 10.1016/j.solmat.2016.03.020

Latunussa, C., Mancini, L., Blengini, G., Ardente, F., & Pennington, D. (2016). Analysis of Material Recovery from Silicon Photovoltaic Panels. In EUR 27797 Luxembourg (Luxembourg) Publications Office of the European Union (Issue March).
DOI 10.2788/786252

Meszlényi, G., & Körtvélyessy, G. (1999). Direct determination of vinyl acetate content of ethylene-vinyl acetate copolymers in thick films by infrared spectroscopy. Polymer Testing, 18(7), 551–557.
DOI 10.1016/S0142-9418(98)00053-1

Mulvaney, D. (2014). Are green jobs just jobs? Cadmium narratives in the life cycle of Photovoltaics. Geoforum, 54, 178–186.
DOI 10.1016/j.geoforum.2014.01.014

Nain, P., & Kumar, A. (2020). Metal dissolution from end-of-life solar photovoltaics in real landfill leachate versus synthetic solutions: One-year study. Waste Management, 114, 351–361.
DOI 10.1016/j.wasman.2020.07.004

Padoan, F. C. S. M., Altimari, P., & Pagnanelli, F. (2019). Recycling of end of life photovoltaic panels: A chemical prospective on process development. Solar Energy, 177(July 2018), 746–761.
DOI 10.1016/j.solener.2018.12.003

Pagnanelli, F., Moscardini, E., Granata, G., Abo Atia, T., Altimari, P., Havlik, T., & Toro, L. (2017). Physical and chemical treatment of end of life panels: An integrated automatic approach viable for different photovoltaic technologies. Waste Management, 59, 422–431.
DOI 10.1016/j.wasman.2016.11.011

Paiano, A. (2015). Photovoltaic waste assessment in Italy. Renewable and Sustainable Energy Reviews, 41, 99–112.
DOI 10.1016/j.rser.2014.07.208

Peeters, J. R., Altamirano, D., Dewulf, W., & Duflou, J. R. (2017). Forecasting the composition of emerging waste streams with sensitivity analysis: A case study for photovoltaic (PV) panels in Flanders. Resources, Conservation and Recycling, 120, 14–26.
DOI 10.1016/j.resconrec.2017.01.001

Pinho, J. T., & Galdino, M. A. (2014). Engineering Manual for Photovoltaic Systems (J. T. (UFPA) Pinho & M. A. (Cepel) Galdino (eds.); March 2014). Centro de Pesquisas de Energia Elétrica (Cetel) - Centro de Referência para Energia Solar e Eólica Sergio de Salvo Brito (Cresesb) - Grupo de trabalho de Energia Solar (GTES).

Prado, P. F. de A. (2019). Reciclagem de painéis fotovoltaicos e recuperação de metais. [Universidade de São Paulo].
DOI 10.11606/D.3.2019.tde-30012019-141410

Rockaway Recycling. (2019). Metal Prices. Https://Rockawayrecycling.Com/Scrap-Metal- Prices

Sander, K., Schilling, S., Reinschmidt, J., Wambach, K., Schlenker, S., Müller, A., Jelitte, Springer, J., Fouquet, D., Jelitte, A., Stryi-Hipp, G., & Chrometzka, T. (2007). Study on the Development of a Take Back and Recovery System for Photovoltaic Products. In Components (Issue 03). Oekopol Gmbh, BMU Project Report (co-financed by EPIA and BSW solar) 03MAP092:

Santos, L. (2009). Avaliação da Eficiência da Separação de Plásticos de Resíduos Sólidos Urbanos por Métodos de Dissolução Selectiva. 1–150

Scheff, S. W. (2016). One-Way Analysis of Variance. In Fundamental Statistical Principles for the Neurobiologist (pp. 97–133). Elsevier.
DOI 10.1016/B978-0-12-804753-8.00006-3

Scheirs, J. (1997). Modern Fluoropolymers: High Performance Polymers for Diverse Applications. Chichester, John Wiley & Sons

Shin, J., Park, J., & Park, N. (2017). A method to recycle silicon wafer from end-of-life photovoltaic module and solar panels by using recycled silicon wafers. Solar Energy Materials and Solar Cells, 162(September 2016), 1–6.
DOI 10.1016/j.solmat.2016.12.038

Silver Price. (2019). Silver Price.

Silver Price. (2021). Silver price on Feb 26, 2021.

Soltech. (2016). Personal Communication, ed

Strachala, D., Hylský, J., Vanĕk, J., Fafilek, G., & Jandová, K. (2017). Methods for recycling photovoltaic modules and their impact on environment and raw material extraction. Acta Montanistica Slovaca, 22(3), 257–269

Sverdrup, H., Koca, D., & Ragnarsdottir, K. V. (2014). Investigating the sustainability of the global silver supply, reserves, stocks in society and market price using different approaches. Resources, Conservation and Recycling, 83, 121–140.
DOI 10.1016/j.resconrec.2013.12.008

Tammaro, M., Salluzzo, A., Rimauro, J., Schiavo, S., & Manzo, S. (2016). Experimental investigation to evaluate the potential environmental hazards of photovoltaic panels. Journal of Hazardous Materials, 306, 395–405.
DOI 10.1016/j.jhazmat.2015.12.018

Tao, J., & Yu, S. (2015). Review on feasible recycling pathways and technologies of solar photovoltaic modules. Solar Energy Materials and Solar Cells, 141, 108–124.
DOI 10.1016/j.solmat.2015.05.005

Tao, M., Fthenakis, V., Ebin, B., Steenari, B. M., Butler, E., Sinha, P., Corkish, R., Wambach, K., & Simon, E. S. (2020). Major challenges and opportunities in silicon solar module recycling. Progress in Photovoltaics: Research and Applications, 28(10), 1077–1088.
DOI 10.1002/pip.3316

Wang, T.-Y. Y., Hsiao, J.-C. C., & Du, C.-H. H. (2012). Recycling of materials from silicon base solar cell module. 2012 38th IEEE Photovoltaic Specialists Conference, 002355–002358.
DOI 10.1109/PVSC.2012.6318071

Weckend, S. (IRENA), Wade, A., & Heath, G. (IEA-P. (2016). End of Life Management Solar PV Panels.

Xu, Y., Li, J., Tan, Q., Peters, A. L., & Yang, C. (2018). Global status of recycling waste solar panels: A review. Waste Management, 75, 450–458.
DOI 10.1016/j.wasman.2018.01.036

Yi, Y. K., Kim, H. S., Tran, T., Hong, S. K., & Kim, M. J. (2014). Recovering valuable metals from recycled photovoltaic modules. Journal of the Air and Waste Management Association, 64(7), 797–807.
DOI 10.1080/10962247.2014.891540

Zerbi, G., & Cortili, G. (1970). Structure of poly-(vinyl fluoride) from its infrared spectrum. Spectrochimica Acta Part A: Molecular Spectroscopy, 26(3), 733–739.
DOI 10.1016/0584-8539(70)80117-9