Released under All rights reserved
Copyright: © 2024 CISA Publisher
Arof, A. K., Amirudin, S., Yusof, S. Z., & Noor, I. M. (2014). A method based on impedance spectroscopy to determine transport properties of polymer electrolytes. Physical Chemistry Chemical Physics, 16(5), 1856–1867.
DOI 10.1039/c3cp53830c
Arshad, F., Li, L., Amin, K., Fan, E., Manurkar, N., Ahmad, A., Yang, J., Wu, F., & Chen, R. (2020). A Comprehensive Review of the Advancement in Recycling the Anode and Electrolyte from Spent Lithium Ion Batteries. ACS Sustainable Chemistry and Engineering, 8(36), 13527–13554.
DOI 10.1021/acssuschemeng.0c04940
D’Angelo, A. J., & Panzer, M. J. (2017). Enhanced Lithium Ion Transport in Poly(ethylene glycol) Diacrylate-Supported Solvate Ionogel Electrolytes via Chemically Cross-linked Ethylene Oxide Pathways. Journal of Physical Chemistry B, 121(4), 890–895.
DOI 10.1021/acs.jpcb.6b10125
Grewal, M. S., Kisu, K., Orimo, S. ichi, & Yabu, H. (2022). Increasing the ionic conductivity and lithium-ion transport of photo-cross-linked polymer with hexagonal arranged porous film hybrids. IScience, 25(9), 104910.
DOI 10.1016/j.isci.2022.104910
Kurapati, S., Gunturi, S. S., Nadella, K. J., & Erothu, H. (2019). Novel solid polymer electrolyte based on PMMA:CH3COOLi effect of salt concentration on optical and conductivity studies. Polymer Bulletin, 76(10), 5463–5481.
DOI 10.1007/s00289-018-2659-5
Liu, M., Wang, Y., Li, M., Li, G., Li, B., Zhang, S., Ming, H., Qiu, J., Chen, J., & Zhao, P. (2020). A new composite gel polymer electrolyte based on matrix of PEGDA with high ionic conductivity for lithium-ion batteries. Electrochimica Acta, 354, 136622.
DOI 10.1016/j.electacta.2020.136622
Maia, B. A., Magalhães, N., Cunha, E., Braga, M. H., Santos, R. M., & Correia, N. (2022). Designing Versatile Polymers for Lithium-Ion Battery Applications: A Review. Polymers, 14(3).
DOI 10.3390/polym14030403
Mindemark, J., Lacey, M. J., Bowden, T., & Brandell, D. (2018). Beyond PEO—Alternative host materials for Li+-conducting solid polymer electrolytes. Progress in Polymer Science, 81, 114–143.
DOI 10.1016/j.progpolymsci.2017.12.004
Netzsch. (2019). Thermal Stability of Lithium Ion Battery Electrolyte. https://analyzing-testing.netzsch.com/fr/application-literature/thermal-stability-of-lithium-ion-battery-electrolyte
Raj, T., Chandrasekhar, K., Kumar, A. N., Sharma, P., Pandey, A., Jang, M., Jeon, B. H., Varjani, S., & Kim, S. H. (2022). Recycling of cathode material from spent lithium-ion batteries: Challenges and future perspectives. Journal of Hazardous Materials, 429, 128312.
DOI 10.1016/j.jhazmat.2022.128312
Ren, W., Ding, C., Fu, X., & Huang, Y. (2021). Advanced gel polymer electrolytes for safe and durable lithium metal batteries: Challenges, strategies, and perspectives. Energy Storage Materials, 34, 515–535.
DOI 10.1016/j.ensm.2020.10.018
Shalu, Chaurasia, S. K., Singh, R. K., & Chandra, S. (2013). Thermal stability, complexing behavior, and ionic transport of polymeric gel membranes based on polymer PVdF-HFP and ionic liquid, [BMIM][BF4]. Journal of Physical Chemistry B, 117(3), 897–906.
DOI 10.1021/jp307694q
Wang, Z., Shen, L., Deng, S., Cui, P., & Yao, X. (2021). 10 μm-Thick High-Strength Solid Polymer Electrolytes with Excellent Interface Compatibility for Flexible All-Solid-State Lithium-Metal Batteries. Advanced Materials, 33(25), 1–7.
DOI 10.1002/adma.202100353
Xu, K. (2004). Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical Reviews, 104(10), 4303–4417.
DOI 10.1021/cr030203g
Xuan, X., Wang, J., & Wang, H. (2005). Theoretical insights into PF6- and its alkali metal ion pairs: Geometries and vibrational frequencies. Electrochimica Acta, 50(20), 4196–4201.
DOI 10.1016/j.electacta.2005.01.045
Yao, P., Yu, H., Ding, Z., Liu, Y., Lu, J., Lavorgna, M., Wu, J., & Liu, X. (2019). Review on Polymer-Based Composite Electrolytes for Lithium Batteries. Frontiers in Chemistry, 7, 1–17.
DOI 10.3389/fchem.2019.00522
Zhang, J., Zeng, Y., Li, Q., Tang, Z., Sun, D., Huang, D., Zhao, L., Tang, Y., & Wang, H. (2023). Polymer-in-salt electrolyte enables ultrahigh ionic conductivity for advanced solid-state lithium metal batteries. Energy Storage Materials, 54, 440–449.
DOI 10.1016/j.ensm.2022.10.055
Zhang, Q., Liu, K., Ding, F., & Liu, X. (2017). Recent advances in solid polymer electrolytes for lithium batteries. Nano Research, 10(12), 4139–4174.
DOI 10.1007/s12274-017-1763-4
Zhou, D., Shanmukaraj, D., Tkacheva, A., Armand, M., & Wang, G. (2019). Polymer Electrolytes for Lithium-Based Batteries: Advances and Prospects. Chem, 5(9), 2326–2352.
DOI 10.1016/j.chempr.2019.05.009
Francesca Pagnanelli, Pietro Altimari, Pier Giorgio Schiavi, Ludovica D'Annibale, Alyssa Mancini, Marco Colasanti, Emanuela Moscardini, Lorenzo Toro, Ludovica Baldassari and Luigi Toro
Published 07 Sep 2024Giulia Tameni, Francesco Cammelli, Hamada Elsayed, Francesco Stangherlin and Enrico Bernardo
Published 07 Sep 2024Priscila Silva Silveira Camargo, Andrey da Silva Domingues, João Pedro Guê Palomero, Angela Cristina Kasper, Pablo Ribeiro Dias and Hugo M. Veit
Published 07 Sep 2024Title | Support | Price |
---|