an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU

GEL POLYMER ELECTROLYTES ELABORATED BY UV-IRRADIATION FOR THE ECO-DESIGN OF LI-ION BATTERIES

  • Ana Barrera - Unité Matériaux et Transformations (UMET), France
  • Corinne Binet - Unité Matériaux et Transformations (UMET), France
  • Imene Benabela - Laboratoire Physico-Chimique des Matériaux, Catalyse et Environnement (LPCMCE), Université des Sciences et de la Technologie Mohammed Boudiaf d’Oran (USTO-MB), Algeria
  • Philippe Supiot - Unité Matériaux et Transformations (UMET), France
  • Corinne Foissac - Unité Matériaux et Transformations (UMET), France
  • Ulrich Maschke - Unité Matériaux et Transformations (UMET), France

Access restricted to subscribed members only

Released under All rights reserved

Copyright: © 2024 CISA Publisher


Abstract

This study examines the chemical, thermal, and dielectric properties of gel polymer electrolytes (GPEs) based on poly(ethylene glycol) diacrylate (PEGDA, average Mn=700 g/mol). GPEs were synthesized via a single-step UV-irradiation process, whereby PEGDA was mixed with varying concentrations of a commercial liquid electrolyte (1 M LiPF6 in EC/DEC 50/50 v/v) ranging from 0 to 60 wt%. The results of the infrared analysis indicated that the liquid electrolyte was successfully immobilized within the polymeric matrix. The thermally stable nature of the synthesized GPEs was confirmed across a wide temperature range (-40 to 90°C) through thermal analysis. Furthermore, dielectric measurements were conducted in a frequency range of 0.1 to 106 Hz, with a sinusoidal AC amplitude of 10 mV, from 20 to 100°C. The results demonstrated that the ionic conductivity of GPEs increased with the addition of liquid electrolyte. The GPEs prepared with 60 wt% liquid electrolyte exhibited a conductivity value of approximately 6.6x10-3 S/m at 30°C, which is consistent with the conductivity range reported in the literature.

Keywords


Editorial History

  • Received: 29 May 2024
  • Accepted: 13 Jul 2024
  • Available online: 07 Sep 2024

References

Arof, A. K., Amirudin, S., Yusof, S. Z., & Noor, I. M. (2014). A method based on impedance spectroscopy to determine transport properties of polymer electrolytes. Physical Chemistry Chemical Physics, 16(5), 1856–1867.
DOI 10.1039/c3cp53830c

Arshad, F., Li, L., Amin, K., Fan, E., Manurkar, N., Ahmad, A., Yang, J., Wu, F., & Chen, R. (2020). A Comprehensive Review of the Advancement in Recycling the Anode and Electrolyte from Spent Lithium Ion Batteries. ACS Sustainable Chemistry and Engineering, 8(36), 13527–13554.
DOI 10.1021/acssuschemeng.0c04940

D’Angelo, A. J., & Panzer, M. J. (2017). Enhanced Lithium Ion Transport in Poly(ethylene glycol) Diacrylate-Supported Solvate Ionogel Electrolytes via Chemically Cross-linked Ethylene Oxide Pathways. Journal of Physical Chemistry B, 121(4), 890–895.
DOI 10.1021/acs.jpcb.6b10125

Grewal, M. S., Kisu, K., Orimo, S. ichi, & Yabu, H. (2022). Increasing the ionic conductivity and lithium-ion transport of photo-cross-linked polymer with hexagonal arranged porous film hybrids. IScience, 25(9), 104910.
DOI 10.1016/j.isci.2022.104910

Kurapati, S., Gunturi, S. S., Nadella, K. J., & Erothu, H. (2019). Novel solid polymer electrolyte based on PMMA:CH3COOLi effect of salt concentration on optical and conductivity studies. Polymer Bulletin, 76(10), 5463–5481.
DOI 10.1007/s00289-018-2659-5

Liu, M., Wang, Y., Li, M., Li, G., Li, B., Zhang, S., Ming, H., Qiu, J., Chen, J., & Zhao, P. (2020). A new composite gel polymer electrolyte based on matrix of PEGDA with high ionic conductivity for lithium-ion batteries. Electrochimica Acta, 354, 136622.
DOI 10.1016/j.electacta.2020.136622

Maia, B. A., Magalhães, N., Cunha, E., Braga, M. H., Santos, R. M., & Correia, N. (2022). Designing Versatile Polymers for Lithium-Ion Battery Applications: A Review. Polymers, 14(3).
DOI 10.3390/polym14030403

Mindemark, J., Lacey, M. J., Bowden, T., & Brandell, D. (2018). Beyond PEO—Alternative host materials for Li+-conducting solid polymer electrolytes. Progress in Polymer Science, 81, 114–143.
DOI 10.1016/j.progpolymsci.2017.12.004

Netzsch. (2019). Thermal Stability of Lithium Ion Battery Electrolyte. https://analyzing-testing.netzsch.com/fr/application-literature/thermal-stability-of-lithium-ion-battery-electrolyte

Raj, T., Chandrasekhar, K., Kumar, A. N., Sharma, P., Pandey, A., Jang, M., Jeon, B. H., Varjani, S., & Kim, S. H. (2022). Recycling of cathode material from spent lithium-ion batteries: Challenges and future perspectives. Journal of Hazardous Materials, 429, 128312.
DOI 10.1016/j.jhazmat.2022.128312

Ren, W., Ding, C., Fu, X., & Huang, Y. (2021). Advanced gel polymer electrolytes for safe and durable lithium metal batteries: Challenges, strategies, and perspectives. Energy Storage Materials, 34, 515–535.
DOI 10.1016/j.ensm.2020.10.018

Shalu, Chaurasia, S. K., Singh, R. K., & Chandra, S. (2013). Thermal stability, complexing behavior, and ionic transport of polymeric gel membranes based on polymer PVdF-HFP and ionic liquid, [BMIM][BF4]. Journal of Physical Chemistry B, 117(3), 897–906.
DOI 10.1021/jp307694q

Wang, Z., Shen, L., Deng, S., Cui, P., & Yao, X. (2021). 10 μm-Thick High-Strength Solid Polymer Electrolytes with Excellent Interface Compatibility for Flexible All-Solid-State Lithium-Metal Batteries. Advanced Materials, 33(25), 1–7.
DOI 10.1002/adma.202100353

Xu, K. (2004). Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical Reviews, 104(10), 4303–4417.
DOI 10.1021/cr030203g

Xuan, X., Wang, J., & Wang, H. (2005). Theoretical insights into PF6- and its alkali metal ion pairs: Geometries and vibrational frequencies. Electrochimica Acta, 50(20), 4196–4201.
DOI 10.1016/j.electacta.2005.01.045

Yao, P., Yu, H., Ding, Z., Liu, Y., Lu, J., Lavorgna, M., Wu, J., & Liu, X. (2019). Review on Polymer-Based Composite Electrolytes for Lithium Batteries. Frontiers in Chemistry, 7, 1–17.
DOI 10.3389/fchem.2019.00522

Zhang, J., Zeng, Y., Li, Q., Tang, Z., Sun, D., Huang, D., Zhao, L., Tang, Y., & Wang, H. (2023). Polymer-in-salt electrolyte enables ultrahigh ionic conductivity for advanced solid-state lithium metal batteries. Energy Storage Materials, 54, 440–449.
DOI 10.1016/j.ensm.2022.10.055

Zhang, Q., Liu, K., Ding, F., & Liu, X. (2017). Recent advances in solid polymer electrolytes for lithium batteries. Nano Research, 10(12), 4139–4174.
DOI 10.1007/s12274-017-1763-4

Zhou, D., Shanmukaraj, D., Tkacheva, A., Armand, M., & Wang, G. (2019). Polymer Electrolytes for Lithium-Based Batteries: Advances and Prospects. Chem, 5(9), 2326–2352.
DOI 10.1016/j.chempr.2019.05.009