an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU


  • Laura Capelli - Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Italy
  • Rosa Arias - Ibercivis Foundation, Spain
  • Jose Uribe - International Solid Waste Association (ISWA), Netherlands
  • Selena Sironi - Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Italy

Released under CC BY-NC-ND

Copyright: © 2019 CISA Publisher


Odour pollution is a well-known problem related to a number of different industrial activities. It is also one of the main causes of citizens’ complaints to local authorities. Specific programs are needed to manage persistent odour pollution problems within communities in order to avoid possible socio-environmental conflicts. The H2020 project D-NOSES (Distributed Network for Odour Sensing, Empowerment and Sustainability) aims to help citizens co-create local solutions in collaboration with industries, regional & local authorities, and odour experts. The project will develop an innovative bottom-up approach to odour pollution governance by combining citizen science and stakeholder management methods using a quadruple helix model. The first aim of this article is to introduce the D-NOSES project and its methodology. Aside from that, the article presents an overview of the existing odour impact assessment methods currently available to quantify odour pollution. Finally, the different odour measurement methods are compared in terms of their applicability and limitations. This overview will be made available online as a first step towards the development of the International Odour Observatory, a platform to be created within the D-NOSES project to help promote odour pollution management and resolve regulation issues. The platform will become a global resource on odour issues and also include information about odour abatement systems, chemical substances in odour emissions, and odour regulations around the world.


Editorial History

  • Received: 27 Nov 2019
  • Revised: 26 Feb 2020
  • Accepted: 30 Apr 2020
  • Available online: 07 Sep 2020


Aatamila, M., Verkasalo, P. K., Korhonen, M. J., Suominen, A. L., Hirvonen, M. R., Viluksela, M. K., & Nevalainen, A. (2011). Odour annoyance and physical symptoms among residents living near waste treatment centres. Environ Res, 111(1), 164-170

Ávila, B. M., Pereira, V. B., Gomes, A. O., & Azevedo, D. A. (2014). Speciation of organic sulfur compounds using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry: A powerful tool for petroleum refining. Fuel, 126, 188-193.
DOI 10.1016/j.fuel.2014.02.055

Bonney, R., Phillips, T. B., Ballard, H. L., & Enck, J. W. (2016). Can citizen science enhance public understanding of science?. Public Understanding of Science, 25(1), 2-16.
DOI 10.1177/0963662515607406

Capelli, L., & Sironi, S. (2018). Combination of field inspection and dispersion modelling to estimate odour emissions from an Italian landfill. Atmospheric Environment, 191, 273-290.
DOI 10.1016/j.atmosenv.2018.08.007

Capelli, L., Bax, C., Diaz, C., Izquierdo, C., Arias, R., & Salas Seoane N. (2019). Review on odour pollution, odour measurement, abatement techniques, D-NOSES, H2020-SwafS-23-2017-789315.

CEN, (2003). EN 13725:2003. Air Quality – Determination of Odor Concentration by Dynamic Olfactometry. Brussels, Belgium

CEN (2016a). EN 16841-2:2016. Ambient air - Determination of odour in ambient air by using field inspection - Part 2: Plume method. Brussels, Belgium

CEN, (2016b). EN 16841-2:2016. Ambient air - Determination of odour in ambient air by using field inspection - Part 1: Grid method. Brussels, Belgium

Cipriano, D., & Capelli, L. (2019). Evolution of Electronic Noses from Research Objects to Engineered Environmental Odour Monitoring Systems: A Review of Standardization Approaches. Biosensors, 9(2), 75.
DOI 10.3390/bios9020075

Conti, C., Guarino, M., & Bacenetti, J. (2020). Measurements techniques and models to assess odor annoyance: A review. Environment international, 134, 105261.
DOI 10.1016/j.envint.2019.105261

Davoli, E., Gangai, M. L., Morselli, L., & Tonelli, D. (2003). Characterisation of odorants emissions from landfills by SPME and GC/MS. Chemosphere, 51(5), 357-368.
DOI 10.1016/S0045-6535(02)00845-7

Deshmukh, S., Bandyopadhyay, R., Bhattacharyya, N., Pandey, R. A., & Jana, A. (2015). Application of electronic nose for industrial odors and gaseous emissions measurement and monitoring–an overview. Talanta, 144, 329-340.
DOI 10.1016/j.talanta.2015.06.050

Guffanti, P., Pifferi, V., Falciola, L., & Ferrante, V. (2018). Analyses of odours from concentrated animal feeding operations: A review. Atmospheric Environment, 175, 100-108.
DOI 10.1016/j.atmosenv.2017.12.007

Henshaw, P., Nicell, J., & Sikdar, A. (2006). Parameters for the assessment of odour impacts on communities. Atmos Environ, 40, 1016-1029.
DOI 10.1016/j.atmosenv.2005.11.014

Kormi, T., Mhadhebi, S., Ali, N. B. H., Abichou, T., & Green, R. (2018). Estimation of fugitive landfill methane emissions using surface emission monitoring and Genetic Algorithms optimization. Waste management, 72, 313-328.
DOI 10.1016/j.wasman.2016.11.024

Lucernoni, F., Capelli, L., & Sironi, S. (2017). Comparison of different approaches for the estimation of odour emissions from landfill surfaces. Waste manage, 63, 345-353.
DOI 10.1016/j.wasman.2016.09.041

Marchand, M., Aissani, L., Mallard, P., Béline, F., & Réveret, J. P. (2013). Odour and life cycle assessment (LCA) in waste management: a local assessment proposal. Waste Biomass Valori, 4(3), 607-617.
DOI 10.1007/s12649-012-9173-z

Paulos, E., Honicky, R. J., & Hooker, B. (2009). Citizen science: Enabling participatory urbanism. In Handbook of research on urban informatics: The practice and promise of the real-time city (pp. 414-436). IGI Global.
DOI 10.4018/978-1-60566-152-0.ch028

Ranzato, L., Barausse, A., Mantovani, A., Pittarello, A., Benzo, M., & Palmeri, L. (2012). A comparison of methods for the assessment of odor impacts on air quality: Field inspection (VDI 3940) and the air dispersion model CALPUFF. Atmospheric Environment, 61, 570-579.
DOI 10.1016/j.atmosenv.2012.08.009

Rodríguez-Navas, C., Forteza, R., & Cerdà, V. (2012). Use of thermal desorption–gas chromatography–mass spectrometry (TD–GC–MS) on identification of odorant emission focus by volatile organic compounds characterisation. Chemosphere, 89(11), 1426-1436.
DOI 10.1016/j.chemosphere.2012.06.013

Samir, S., & Hossain, M. S. (2014). Evaluation and Applicability of Flame Ionization Detector for Fugitive Emission. In Geo-Congress 2014: Geo-characterization and Modeling for Sustainability (pp. 2052-2061).
DOI 10.1061/9780784413272.200

Singh, R. K., Ramteke, D. S., Juneja, H. D., & Pandya, G. H. (2013). Ambient air quality monitoring in terms of volatile organic compounds (VOCs) occupational health exposure at petroleum refinery. International Journal of Environmental Protection, 3(7), 22

Sironi, S., Capelli, L., Céntola, P., Del Rosso, R., & Il Grande, M. (2006). Odour emission factors for the prediction of odour emissions from plants for the mechanical and biological treatment of MSW. Atmos Environ, 40(39), 7632-7643.
DOI 10.1016/j.atmosenv.2006.06.052

Sironi, S., Capelli, L., & Del Rosso, R., (2014). Odor Emissions, pp. 1-23. In: Elsevier Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. J. Reedijk (Ed.), Elsevier, Waltham, MA

Sironi, S., Capelli, L., Céntola, P., Del Rosso, R., & Pierucci, S. (2010). Odour impact assessment by means of dynamic olfactometry, dispersion modelling and social participation. Atmospheric Environment, 44(3), 354-360.
DOI 10.1016/j.atmosenv.2009.10.029

Sowka, I., Miller, U., & Sobczyński, P. I. O. T. R. (2016). Dynamic olfactometry and modelling as methods for the assessment of odour impact of public utility objects. Environment Protection Engineering, 42(3)

Wang, B., Sivret, E. C., Parcsi, G., Wang, X., Le, N. M., Kenny, S., ... & Stuetz, R. M. (2014). Is H2S a suitable process indicator for odour abatement performance of sewer odours?. Water science and technology, 69(1), 92-98.
DOI 10.2166/wst.2013.55

Wright, D. W., Eaton, D. K., Nielsen, L. T., Kuhrt, F. W., Koziel, J. A., Spinhirne, J. P., & Parker, D. B. (2005). Multidimensional gas chromatography− olfactometry for the identification and prioritization of malodors from confined animal feeding operations. Journal of Agricultural and food Chemistry, 53(22), 8663-8672.
DOI 10.1021/jf050763b

Zhang, S., Koziel, J. A., Cai, L., Hoff, S. J., Heathcote, K. Y., Chen, L., ... & Caraway, E. A. (2015). Odor and odorous chemical emissions from animal buildings: Part 5. Simultaneous chemical and sensory analysis with gas chromatography-mass spectrometry-olfactometry. Transactions of the ASABE, 58(5), 1349-1359.
DOI 10.13031/trans.58.11123

Zhao, Y., Lu, W., & Wang, H. (2015). Volatile trace compounds released from municipal solid waste at the transfer stage: evaluation of environmental impacts and odour pollution. Journal of hazardous materials, 300, 695-701.
DOI 10.1016/j.jhazmat.2015.07.081