an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU

THE ACTUAL IMPACT OF WASTE-TO-ENERGY PLANT EMISSIONS ON AIR QUALITY: A CASE STUDY FROM NORTHERN ITALY

  • Giovanni Lonati - DICA, Politecnico di Milano, Italy
  • Alberto Cambiaghi - BEA - Brianza Energia Ambiente SpA, Italy
  • Stefano Cernuschi - DICA, Politecnico di Milano, Italy

DOI 10.31025/2611-4135/2019.13817

Released under CC BY-NC-ND

Copyright: © 2018 CISA Publisher

Editorial History

  • Received: 29 Nov 2018
  • Revised: 05 Apr 2019
  • Accepted: 29 Apr 2019
  • Available online: 24 May 2019

Abstract

In recent decades there has been an intense debate about the impact of waste-to-energy (WTE) plant emissions on air quality, and therefore on public health. Currently available data from emissions inventories show the negligible impact of waste incineration on air quality. A number of impact assessment studies are currently available too. A few of them are site-specific, but none of them makes a direct comparison between the local impact of the emissions from a WTE plant and emissions from other “common” sources (such as vehicles and domestic heating) perceived as less potentially hazardous in the public opinion. This paper examines the impact on air quality of actual emissions from a WTE plant in the municipality of Desio (located to the North of Milan in the Lombardy region) using CALPUFF atmospheric dispersion model. Continuous emission monitoring data were used to measure the plant’s actual emissions of PM10, NOx, cadmium, and dioxins (PCDD/F) as inputs for model simulations. For comparison purposes, the impact of traffic emissions along the main roads in Desio was also simulated. The results of the model show that the WTE plant has a marginal impact on local air quality compared with pollution from vehicular traffic. The contribution of the plant’s actual emissions to ambient pollution concentration levels in the urban area of Desio is between two (NOx and cadmium) to four (PM10 and PCDD/F) orders of magnitude smaller than the contribution from road traffic emissions.

Keywords


References

Achillas, C., Vlachokostas, C., Moussiopoulos, N., Banias, G., Kafetzopoulos, G., Karagiannidis, A., 2011. Social acceptance for the development of a waste-toenergy plant in an urban area. Resour. Conserv. Recy. 55, 857-863

ARPA Lombardia (2018) INEMAR, Inventario Emissioni in Atmosfera: emissioni in Regione Lombardia nell’anno 2014 - revisione pubblica

http://www.inemar.eu/xwiki/bin/view/InemarDatiWeb/Inventario+delle+emissioni+in+atmosfera (accessed November 2017)

ARPA Veneto, 2016. Progetto Acciaierie Monitoraggio della qualità dell’aria presso Altavilla Vicentina, Vicenza Ferrovieri e Vicenza quartiere Italia - ARPAV DAP VI 2017

ARPA Veneto, 2018. Studio e determinazione delle ricadute dell’impianto di termovalorizzazione di Schio

Ashworth, D.C., Elliott, P., Toledano, M.B., 2014. Waste incineration and adverse birth and neonatal outcomes: a systematic review, Environ. Int. 69, 120–132.
DOI 10.1016/j.envint.2014.04.003

Baxter, J., Ho, Y., Rollins, Y., Maclaren, V., 2016. Attitudes toward waste to energy facilities and impacts on diversion in Ontario, Canada. Waste Manage. 50, 75-85

Caserini, S., Cernuschi, S. Giugliano, M., Grosso, M., Lonati, G., Mattaini, P., 2004. Air and soil dioxin levels at three sites in Italy in proximity to MSW incineration plants. Chemosphere 54, 1279-1287

Chung, J.B., Kim, H.K., 2009. Competition, economic benefits, trust, and risk perception in siting a potentially hazardous facility. Landscape Urban Plan. 91, 8-16

Dong, J. Tang, Y., Nzihou, A., Chi, Y., Weiss-Hortala, E., Ni, M., Zhou, Z., 2018. Comparison of waste-to-energy technologies of gasification and incineration using life cycle assessment: Case studies in Finland, France and China. J. Clean. Prod. 203, 287-300

EMEP/EEA 2016. EMEP/EEA air pollutant emission inventory guidebook. https://www.eea.europa.eu/themes/air/emep-eea-air-pollutant-emission-inventory-guidebook (accessed November 2017)

European Union, 2008. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe, OJ L 152, 11.6.2008, 1-44

Evangelisti, S., Tagliaferri, C., Clift, R., Lettieri, P., Taylor, R., Chapman, C., 2015. Life cycle assessment of conventional and two-stage advanced energy-from-waste technologies for municipal solid waste treatment. J. Clean. Prod. 100, 212-223

ISPRA 2017 - La banca dati dei fattori di emissione medi del trasporto stradale in Italia. http://www.sinanet.isprambiente.it/it/sia-ispra/fetransp/ (accessed November 2017)

LAI (Länderausschuss für Immissionsschutz), 2004. Bericht des Länderausschusses für Immissionsschutz (LAI) Bewertung von Schadstoffen, für die keine Immissionswerte festgelegt sind Orientierungswerte für die Sonderfallprüfung und für die Anlagenüberwachung sowie Zielwerte für die langfristige Luftreinhalteplanung unter besonderer Berücksichtigung der Beurteilung krebserzeugender Luftschadstoffe

https://www.lanuv.nrw.de/fileadmin/lanuv/gesundheit/pdf/LAI2004.pdf (accessed November 2017)

Li, Y., Jiang, G., Wang, Y., Cai, Z., Zhang, Q. 2008. Concentrations, profiles and gas-particle partitioning of polychlorinated dibenzo-p-dioxins and dibenzofurans in the ambient air of Beijing, China. Atmos. Environ. 42, 2037-2047

Lidskog, R., Sundqvist, G., 2004. On the right track? Technology, geology and society in Swedish nuclear waste management. J. Risk Res. 7, 251-268

Liu, Y., Sun, C. Xia, B. Cui, C., Coffey, V., 2018. Impact of community engagement on public acceptance towards waste-to-energy incineration projects: empirical evidence from China. Waste Manag. 76, 431-442.
DOI 10.1016/j.wasman.2018.02.028

Mah, D.N.-Y., Hills, P., Tao, J., 2014. Risk perception, trust and public engagement in nuclear decision-making in Hong Kong. Energ. Policy 73, 368-390

Passarini, F., Nicoletti, M., Ciacci, L., Vassura, I., Morselli, L., 2014. Environmental impact assessment of a WTE plant after structural upgrade measures. Waste Manag. 34, 753-762.
DOI 10.1016/j.wasman.2013.12.022

Petts, J., 1992. Incineration risk perceptions and public concern: experience in the U.K. improving risk communication. Waste Manage. Res. 10, 169–182.
DOI 10.1177/0734242X9201000205

Ren, X., Che, Y., Yang, K., Tao, Y., 2015. Risk perception and public acceptance toward a highly protested Waste-to-Energy facility. Waste Manag. 48, 528-539.
DOI 10.1016/j.wasman.2015.10.036

Schlabach, M., Tønnessen, D. 2008. Urban Background Levels of Dioxin and PCB in Oslo. NILU (Norwegian Institute for Air Research) Report 2453/2008, ISBN 978-82-7655-552-3

Song, J., Sun, Y., Jin, L., 2017. PESTEL analysis of the development of the waste-to-energy incineration industry in China. Renew. Sust. Energ. Rev. 80, 276-289

Turrio-Baldassarri, L., Abate, V., Iacovella, N., Monfredini, F., Menichini, E. 2005. Occurrence of PCDD/Fs in urban air before and after the ban of leaded gasoline. Chemosphere, 59, 1517-1524

WHO (World Health Organization), 2000. Air Quality Guidelines for Europe-Second Edition. WHO Regional Publications, European Series, No. 91



may
18
nov
16