an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU


  • Martijn van Praagh - Environment, Afry, Sweden - Centre for Environmental and Climate Science, Lund University, Sweden
  • Bettina Liebmann - Umweltbundesamt, Austria


Released under CC BY-NC-ND

Copyright: © 2021 CISA Publisher


We investigated the occurrence of microplastics (size range 5,000-50 µm) in leachates at 11 landfills of different age and operational status in Finland, Iceland and Norway. Collective sampling was carried out by pumping leachate with a stainless-steel submergible pump through a custom-made, stainless-steel filter unit containing filter plates with decreasing pore sizes (5,000, 417 and 47 µm, respectively). Samples were pre-treated and split into particles size classes above 500 μm and above 50 μm, and screened for occurrence of microplastics made of PE, PP, PVC, PS, PET, PA, PU, PC, PMMA, POM, SBR (rubber) or PMB (polymer modified bitumen). Samples were analysed by FT-IR spectroscopy, both to identify and to count microplastic particles (SBR and PMB were merely identified). Most samples tested positive for multiple microplastics. Three leachates, including drinking water (blank), tested positive for SBR particles and/or PMB only. Treated leachate samples exhibited lower total microplastic’s counts than untreated, up to several orders of magnitude. National waste management practices over time, landfill age or operational status do not seem to explain differences in microplastic abundance or counts between leachates. Particle count and calculated loads of microplastic emissions through leachates differed several orders of magnitude between landfills. Results indicate that landfill leachates might be a relatively small source of microplastics (>50 µm) to surface waters compared to untreated and treated sewage or road runoff. Continued data acquisition, improved sample preparation and understanding of variability of microplastics in landfill leachate are necessary, including particles smaller than 50 µm.


Editorial History

  • Received: 05 Mar 2021
  • Revised: 11 Nov 2021
  • Accepted: 17 Dec 2021
  • Available online: 28 Dec 2021


Ambrosini, R., Azzoni, R.S., Pittino, F., Diolaiuti, G., Franzetti, A., Parolini, M., 2019. First evidence of microplastic contamination in the supraglacial debris of an alpine glacier, Environmental Pollution, vol. 253, pp. 297–301

Ajayi, S.O., Oyedele, L.O., Akinade, O.O., Bilal, M., Owolabi, H.E., Alaka, H.A., Kadiri, K.O., 2016. Reducing waste to landfill: A need for cultural change in the UK construction industry. Journal of Building Engineering, Volume 5, 2016, Pages 185-193, ISSN 2352-7102.
DOI 10.1016/j.jobe.2015.12.007

Behzad, M., Zolfani, S.H., Pamucar, D., Behzad, M., 2020. A comparative assessment of solid waste management performance in the Nordic countries based on BWM-EDAS, Journal of Cleaner Production, Volume 266, 2020, 122008, ISSN 0959-6526,
DOI 10.1016/j.jclepro.2020.122008

Barnes, D.K., Galgani, F., Thompson, R.C., Barlaz, M., 2009. Accumulation and fragmenta tion of plastic debris in global environments. Philos. Trans. R. Soc. B 364, 1985–1998

Bleiker, D.E., Farquhar., G., McBean, E., 1995. Landfill settlement and the impact on site capacity and refuse hydraulic conductivity. Waste Management & Research 13: 533–554

Canopoli, L., Fidalgo, B., Coulon, F., Wagland, S.T., 2018. Physico-chemical properties of excavated plastic from landfill mining and current recycling routes, Waste Management, Volume 76, 2018, Pages 55-67, ISSN 0956-053X,
DOI 10.1016/j.wasman.2018.03.043

Canopoli, L., Coulon, F., Wagland, S.T., 2020. Degradation of excavated polyethylene and polypropylene waste from landfill, Science of The Total Environment, Volume 698, 2020, 134125, ISSN 0048-9697,
DOI 10.1016/j.scitotenv.2019.134125

Carpenter, E.J., Anderson, S.J., Harvey, G.R., Miklas, H.P., Peck, B.B., 1972. Polystyrene spherules in coastal waters. Science, 178 (4062), pp. 749-750

Cole, M., Webb, H., Lindeque, P.K., Fileman, E.S., Halsband, C., Galloway, T.S., 2014. Isolation of microplastics in biota-rich seawater samples and marine organisms. Scientific Reports 4: 4528,
DOI 10.1038/srep04528

Collard, F.; Parmentier, E.; Das, K.; Gilbert, B.; Eppe, G., 2015. Detection of anthropogenic particles in fish stomachs: an isolation method adapted to identification by Raman spectroscopy. Arch. Environ. Contam. Toxicol., 69 (3) (2015), pp. 331-339

Crawford, C.B, and Quinn, B. 2017. 3 - Plastic production, waste and legislation, in Microplastic Pollutants (Editor(s): Christopher Blair Crawford, Brian Quinn,Elsevier, 2017, Pages 39-56, ISBN 9780128094068

Deng Y, Zhang Y, Lemos B, Ren H. 2017. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Sci.Rep. 7:1–10

Dris, R., Gasperi, J., Saad, M., Mirande, C., Tassin, B., 2016. Synthetic fibers in atmospheric fallout: A source of microplastics in the environment? Marine Pollution Bulletin. 2016;104(1-2):290-293. oi:10.1016/j.marpolbul.2016.01.006

EC, 1999. Council Directive 99/31/EC of 26 April 1999 on the landfill of waste. Official Journal L 182, 16/07/1999, 0001 – 0019

EC, 2002. Council Decision of 19 December 2002 establishing criteria and procedures for the acceptance of waste at landfills pursuant to Article 16 of and Annex II to Directive 1999/31/EC. Official Journal L 011, 16/01/2003, 0027 – 0049

Echa, 2017. Annex XV Report: An Evaluation of the possible Health Risks of Recycled Rubber Granules uses as Infill in Synthetic Turf Sport Fields.

Eriksen, M., Mason, S., Wilson, S., box, C., Zellers, A., Edwards, W., Farley, H., Amato, S., 2013. Microplastic pollution in the surface waters of the Laurentian Great Lakes. Marine Pollution Bulletin 77: 177–182

Eriksen, M., Lebreton, L.C.M., Carson, H.S., Thiel, M., Moore, C.J., 2014. Plastic Pollution in the World’s Oceans: More than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea. PLoS ONE 9(12): e111913.
DOI 10.1371/journal.pone.0111913

Ganesh Kumar. A., Anjana K., Hinduja M., Sujitha K., Dharani G., 2020. Review on plastic wastes in marine environment – Biodegradation and biotechnological solutions, Marine Pollution Bulletin, Volume 150, 2020, 110733, ISSN 0025-326X,
DOI 10.1016/j.marpolbul.2019.110733

Gardiner, R., Hajek, P., 2020. Municipal waste generation, R&D intensity, and economic growth nexus – A case of EU regions, Waste Management, Volume 114, 2020, Pages 124-135, ISSN 0956-053X,
DOI 10.1016/j.wasman.2020.06.038

GESAMP, 2015. Sources, fate and effects of microplastics in the marine environment: a global assessment. (Kershaw, P. J., Ed.) IMO/FAO/Unesco-IOC/WMO/IAEA/UN/UNEP - Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP)(90). ISSN 1020-4873

Giacomucci, L., Raddadi, N., Soccio, M., Lotti, N., Fava, F. 2020. Biodegradation of polyvinyl chloride plastic films by enriched anaerobic marine consortia, Marine Environmental Research, Volume 158, 2020, 104949, ISSN 0141-1136,
DOI 10.1016/j.marenvres.2020.104949

Haglund, P., Holmgren, T., Olofsson, U., Arnoldsson, K., Westerdahl, J., Tivander, J., Molander, S., van Praagh, M., Törneman, N., Humston-Fulmer, L., 2015. Goldschmidt Abstracts, 2015 1145

He, P., Chen, L., Shao, L., Zhang, H., Lü, F., 2019 Municipal solid waste (MSW) landfill: A source of microplastics? - Evidence of microplastics in landfill leachate, Water Research, Volume 159, 2019, Pages 38-45, ISSN 0043-1354,
DOI 10.1016/j.watres.2019.04.060

Hidalgo-Ruz, V., Gutow, L., Thompson, R. C. & Thiel, M., 2012. Microplastics in the Marine Environment: A Review of the Methods used for Identification and Quantification. Environmental Science & Technology, 46(6), s. 3060–3075

Hohenblum, P., Frischenlager, H., Reisinger, H., Konecny, R., Uhl, M., Mühlegger, S., Habersack, H. Liedermann, , M., Gmeiner, P., Weidenhiller, B., Fischer, N., Rindler, R. 2015. Plastic in the Danube River (in German: Plastik in der Donau. Untersuchung zum Vorkommen von Kunststoffen in der Donau in Österreich). Reports, Bd. REP-0547. Umweltbundesamt, Vienna, Austria

Hou, L. Kumar, D., Geun Yoo, C., Gitsov, I., Majumder, E.L.-W. 2021. Conversion and removal strategies for microplastics in wastewater treatment plants and landfills, Chemical Engineering Journal, Volume 406, 2021, 126715, ISSN 1385-8947,
DOI 10.1016/j.cej.2020.126715

Imhof, H.K., Schmid, J., Niessner, R., Ivelva, N.P., Laforsch, C., 2012. A novel, highly efficient method for the separation and quantification of plastic particles in sediments of aquatic environments. Limnology and Oceanography: Methods 10: 524–537

Ishigaki, T., Sugano, W., Nakanishi, A., Tateda, M., Ike, M., Fujita, M., 2004. The degradability of biodegradable lastics in aerobic and anaerobic waste landfill model reactors, Chemosphere, Volume 54, Issue 3, 2004, Pages 225-233, ISSN 0045-6535,
DOI 10.1016/S0045-6535(03)00750-1

Kagawa, S., Nakamura, S., Inamura, H., Yamada, M., 2007. Measuring spatial repercussion effects of regional waste management, Resources, Conservation and Recycling, Volume 51, Issue 1, 2007, 141-174, ISSN 0921-3449,
DOI 10.1016/j.resconrec.2006.09.001

Karami, K., Golieskardi, A. , Choo, C.K., Romano, N., Ho, Y.B., Salamatinia,B. 2017. A high-performance protocol for extraction of microplastics in fish. Science of The Total Environment, Vol. 578, p. 485-494,
DOI 10.1016/j.scitotenv.2016.10.213

Kjeldsen, P., Barlaz, M.A., Rooker, A.P., Baun, A, Ledin, A., Christensen, T.H. (2002). Present and Long-Term Composition of MSW Landfill Leachate: A Review. Critical Reviews in Environmental Science and Technology, 32(4):297-336

Kokalj, A.J., Kuehnel, D., Puntar, B., Gotvajn, A.Z., Kalčikova, G., 2019. An exploratory ecotoxicity study of primary microplastics versus aged in natural waters and wastewaters, Environmental Pollution, Volume 254, Part A, 2019, 112980, ISSN 0269-7491,
DOI 10.1016/j.envpol.2019.112980

Lestari, P., Trihadiningrum, Y., 2019. The impact of improper solid waste management to plastic pollution in Indonesian coast and marine environment, Marine Pollution Bulletin, Volume 149, 2019, 110505, ISSN 0025-326X,
DOI 10.1016/j.marpolbul.2019.110505

Magnusson, K., Eliasson, K., Fråne, A., Haikonen, K., Hultén, J., Olshammar, M., Stadmark, J. and Voisin, A., 2016. Swedish sources and pathways for microplastics to the marine environment. A review of existing data. IVL Swedish Environmental Research Institute (IVL Svenska Miljöinstitutet): 87

Magnusson, K., Wahlberg, C., 2014. Microlitter in WWTP-effluentes (ini Swedish Mikroskopiska skräppartiklar i vatten från avloppsreningsverk). IVL-report B2208

Masura, J., Baker, J., Foster, G., Arthur, C., 2015. Laboratory Methods for the Analysis of Microplastics in the Marine Environment: Recommendations for Quantifying Synthetic Particles in Watersand Sediments, Vol. 39

Milios, L., Holm Christensen, L., McKinnon, D., Christensen, C., Rasch, M.K., Hallstrøm Eriksen, M., 2018. Plastic recycling in the Nordics: A value chain market analysis, Waste Management, Volume 76, 2018, Pages 180-189, ISSN 0956-053X,
DOI 10.1016/j.wasman.2018.03.034

Muaaz-Us-Salam, S., Cleall, P.J., Harbottle, M.J. 2019. The case for examining fluid flow in municipal solid waste at the pore-scale - A review. Waste management & research , 2019;37(4):315-332.
DOI 10.1177/0734242X19828120

Norden, 2017. Nordic programme to reduce the environmental impact of plastic. Nordic Council of Ministers, ISBN 978-92-893-5002-0 (EPUB)
DOI 10.6027/10.6027/ANP2017-730ANP 2017:730

Norden, 2020. Data on waste management, (Norden, 2020). Eurostat and Statistics Greenland, data retrieved from Eurostat: 20200612, and Nordics statistics database,, accessed 10/10/2020

Nuelle, M.T., Dekiff, J.H., Remy, D., Fries, E., 2014: A new analytical approach for monitoring microplastics in marine sediments. Environmental Pollution 184: 161–169

Papineschi, J., Hogg, D., Chowdhury, T., Durrant, C., Thomson, A., 2019. Analysis of Nordic regulatory framework and its effect on waste prevention and recycling in the region. TemaNord 2019:522,
DOI 10.6027/TN2019-522

Park, S.Y., Kim, C.G., 2019. Biodegradation of micro-polyethylene particles by bacterial colonization of a mixed microbial consortium isolated from a landfill site, Chemosphere, Volume 222, 2019, Pages 527-533, ISSN 0045- 535,
DOI 10.1016/j.chemosphere.2019.01.159

Pereira, J.M., Rodríguez, Y., Blasco-Monleon, S., Porter, A., Lewis, C., Pham, C.K., 2020. Microplastic in the stomachs of open-ocean and deep-sea fishes of the North-East Atlantic. Environmental pollution (Barking, Essex : 1987). 2020;265(Pt A):115060.
DOI 10.1016/j.envpol.2020.115060

PlasticsEurope, 2018. Plastics – the Facts, 2018. An analysis of European plastics production, demand and waste data. Brussels, Belgium 2018

Prata, J.C., da Costa, J.P.. Lopes, I., Duarte, A.C., Rocha-Santos, T., 2020. Environmental status of (micro)plastics contamination in Portugal, Ecotoxicology and Environmental Safety, Volume 200, 2020, 110753, ISSN 0147-6513,
DOI 10.1016/j.ecoenv.2020.110753

Robaina, M., Murillo, K., Rocha, E., Villar, J., 2020. Circular economy in plastic waste - Efficiency analysis of European countries, Science of The Total Environment, Volume 730, 2020, 139038, ISSN 0048-9697,
DOI 10.1016/j.scitotenv.2020.139038

Robertson, I., Lohkamp-Schmitz, G., Liebmann, B., 2015: The application of infrared microscopy for the analysis of microplastics in water-borne environmental samples. Poster, Pittcon Konferenz, 8.–12.3.2015, New Orleans, US

Roland, G., Jambeck, J.R., Lavender Law, K., 2017. Production, use, and fate of all plastics ever made. Science Advances 19 Jul 2017:Vol. 3, no. 7, e1700782,
DOI 10.1126/sciadv.1700782

Sana, S.S., Dogiparthi, L.K., Gangadhar, L. et al. Effects of microplastics and nanoplastics on marine environment and human health. Environ Sci Pollut Res (2020).
DOI 10.1007/s11356-020-10573-x

Schwabl, P., Koppel, Konigshofer, S., Bucsics, T., Trauner, M., Reiberger, T., Liebmann, B., 2019. Detection of Various Microplastics in Human Stool – A Prospective Case Serie. Ann Intern Med. 2019;171:453-457.
DOI 10.7326/M19-0618

Sequeira, I.F., Prata, J.C., da Costa, J.da P., Duarte, A.C., Rocha-Santos, T. 2020. Worldwide contamination of fish with microplastics: A brief global overview, Marine Pollution Bulletin, Volume 160, 2020, 111681,

ISSN 0025-326X,
DOI 10.1016/j.marpolbul.2020.111681

Shah, A.A., Hasan, F., Hameed, A., Ahmed, S., 2008. Biological degradation of plastics: a comprehensive review. Biotechnol. Adv. 26, 246–265

Silva, A.L.P., Prata, J.C., Duarte, A.C., Soares, A.M.V.M., Barceló, D., Rocha-Santos, T. 2021. Microplastics in landfill leachates: The need for reconnaissance studies and remediation technologies, Case Studies in Chemical and Environmental Engineering, Volume 3, 2021, 100072, ISSN 2666-0164,
DOI 10.1016/j.cscee.2020.100072

Sintef, 2018. Sjekk kunstgressbanen – Forskningskampanjen 2017. Via:

gummigranulat/; visited 14-3-2019

Simon, M., van Alst, N., Vollertsen, J., 2018. Quantification of microplastic mass and removal rates at wastewater treatment plants applying Focal Plane Array (FPA)-based Fourier Transform Infrared (FT-IR) imaging. Water Research 142 (2018) 1-9

Simongini, C., Pucetaite, M., Serranti S., Hammar, E., van Praagh, M., Bonifazi, G., 2021. Microplastic identification in landfill leachates by different spectroscopic techniques, Proceedings Sardinia Symposium 2021, Cagliari, Italy

Su, Y., Zhang, Z., Zhu, J., Shi, J., Wei, H., Xie, B., Shi, H. 2021. Microplastics act as vectors for antibiotic resistance genes in landfill leachate: The enhanced roles of the long-term aging process, Environmental Pollution, Volume 270, 2021, 116278, ISSN 0269-7491,
DOI 10.1016/j.envpol.2020.116278

Sundt, P., Schulze, P.-E., Syversen, F., 2014. Sources of microplastic pollution to the marine environment. Mepex for the Norwegian Environment Agency (Miljødirektoratet): 86

Swedish Waste Association, 2018. Microplastics in treated leachate – a case study of eight waste treatment facilities (in Swedish). Report 2018:21, Avfall Sveriges Utvecklingssatsning, ISSN 1103-4092

Tansel, B., 2019. Persistence times of refractory materials in landfills: A review of rate limiting conditions by mass transfer and reaction kinetics, Journal of Environmental Management, Volume 247, 2019, Pages 88-103, ISSN 0301-4797,
DOI 10.1016/j.jenvman.2019.06.056

Teuten E .L., Saquing, J. M., Knappe, D. R. U., Barlaz, M. A., Jonsson, S., Björn, A., Rowland, S. J., Thompson, R. C., Galloway, T. S., Yamashita, R., Ochi, D., Watanuki, Y., Moore, C., Viet, P. H., Tana, T. S., Prudente, M., Boonyatumanond, R., Zakaria, M. P., Akkhavong, K., Ogata, Y., Hirai, H., Iwasa, S., Mizukawa, K., Hagino, Y., Imamura, A., Saha, M., Takada, H., 2009. Transport and release of chemicals from plastics to the environment and to wildlife. Phil. Trans. R. Soc. B 364, 2027-2045

Triebskorn, R. Braunbeck, T., Grummt, T., Hanslik, L., Huppertsberg, S., Jekel, M., Knepper, T.P., Krais, S., Müller, Y.K., Pittroff, M. Ruhl, A.S., Schmieg, H. Schür, C., Strobel, C., Wagner, M., Zumbülte, N. Köhler, H.-R., 2019. Relevance of nano- and microplastics for freshwater ecosystems: A critical review, TrAC Trends in Analytical Chemistry, Volume 110, 2019, Pages 375-392, ISSN 0165-9936,
DOI 10.1016/j.trac.2018.11.023

van Praagh, M., Persson, K. M., 2006. National Translation of the EU landfill directives: Will Swedish Landfills become sustainable? Journal of Sustainable Development and Planning, 1, 46-60

van Praagh, M., Törneman, N., Haglund, P., Bjarke, M., Hallgren, P., 2013. Remaining potential environmental effects of emerging organic contaminants in landfill leachate treatment effluents. Proceedings Sardinia Symposium 2013, Cagliari, Italy, 30/9 -4/10 2013

van Praagh, M., Torneman, N., Johansson, M., Ingelstedt-Frendberg, L., Heander, E., Johansson, A., 2011. Emerging contaminants in leachates- Review and risk assessment. Proceedings Sardinia Symposium 2011, Cagliari, Italy, 3 -8 October 2011

van Praagh, M., Hartman, C., Brandmyr, E., 2018. Microplastics in landfill leachates in the Nordic Countries. TemaNord 2018:557. Nordic Council of Ministers, ISBN 978-92-893-5915-3 (EPUB),
DOI 10.6027/TN2018-557

Welle F, Franz R., 2018. Microplastic in bottled natural mineral water - literature review and considerations on exposure and risk assessment. Food Additives & Contaminants Part A: Chemistry, Analysis, Control, Exposure & Risk Assessment. 2018;35(12):2482-2492.
DOI 10.1080/19440049.2018.1543957

Zaman, A.U., Swapan, M.S.H., 2016. Performance evaluation and benchmarking of global waste management systems, Resources, Conservation and Recycling, Volume 114, 2016, Pages 32-41, ISSN 0921-3449,
DOI 10.1016/j.resconrec.2016.06.020

Zhu, L., Birgisson, B., Kringos, N., 2014. Polymer modification of bitumen: Advances and challenges. European Polymer Journal, Volume 54, 2014, Pages 18-38, ISSN 0014-3057,
DOI 10.1016/j.eurpolymj.2014.02.005

Xu, Z., Sui, Q., Aimin Li, Sun, M., Zhang, L., Lyu, S., Zhao, W. 2020. How to detect small microplastics (20–100 μm) in freshwater, municipal wastewaters and landfill leachates? A trial from sampling to identification, Science of The Total Environment, Volume 733, 2020, 139218, ISSN 0048-9697,
DOI 10.1016/j.scitotenv.2020.139218