an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU

METHODS FOR LABORATORY-GENERATION AND PHYSICO-CHEMICAL CHARACTERISATION OF TYRE WEAR PARTICLES

  • Adeline Sivyer - School of Ocean and Earth Science, University of Southampton, United Kingdom of Great Britain and Northern Ireland
  • Zainab Tariq - School of Engineering, University of Southampton, United Kingdom of Great Britain and Northern Ireland
  • John Langley - School of Chemistry, University of Southampton, United Kingdom of Great Britain and Northern Ireland
  • Ian Williams - School of Engineering, University of Southampton, United Kingdom of Great Britain and Northern Ireland

Access restricted to subscribed members only

Released under All rights reserved

Copyright: © 2024 CISA Publisher


Abstract

Tyre wear particles are generated by the frictional forces between a tyre and the road during driving. Tyre wear represents one of the biggest sources of synthetic polymer-based material released into the environment, significantly contributing to microplastic pollution and the associated ecological consequences. However, the extent of tyre particle pollution is not fully understood, and research and understanding are hindered by a lack of described chemical compounds that meet all the criteria for an effective marker of tyre particles. The aims of this study were to develop a methodology for generating tyre particles using a pin-on-disc tribometer; and to distinguish the chemical components in the particles – using two-dimensional gas chromatography-mass spectrometry – to propose a suite of potential markers. The results show that the morphology of the tyre particles reflected that of particles generated in previous literature and during driving. Additionally, the suggested markers were common across the three tyre brands studied here, thus meeting one of the criteria for a successful marker. Future research into measuring the concentration of tyre particles in environmental samples is necessary to understand further their distribution, and assessing the contribution of tyre particles to non-exhaust emissions can inform on future engineering strategies to minimise their release

Keywords


Editorial History

  • Received: 07 May 2024
  • Revised: 24 Jul 2024
  • Accepted: 28 Jul 2024
  • Available online: 07 Sep 2024

References

Abel, S. M., Wu, F. Z., Primpke, S., Gerdts, G. & Brandt, A. (2023). Journey to the deep: plastic pollution in the hadal of deep-sea trenches. Environmental Pollution, 333, Article 122078.
DOI 10.1016/j.envpol.2023.122078

Achten, C. & Andersson, J. T. (2015). Overview of polycyclic aromatic compounds (PAC). Polycyclic Aromatic Compounds, 35(2-4), 177-186.
DOI 10.1080/10406638.2014.994071

Adachi, K. & Tainosho, Y. (2004). Characterization of heavy metal particles embedded in tire dust. Environment International, 30(8), 1009-1017.
DOI 10.1016/j.envint.2004.04.004

Alonso, M., Woller, T., Martin-Martinez, F. J., Contreras-Garcia, J., Geerlings, P. & De Proft, F. (2014). Understanding the fundamental role of π/π, σ/σ, and σ/π dispersion interactions in shaping carbon-based materials. Chemistry, 20(17), 4931-4941.
DOI 10.1002/chem.201400107

Alves, C. A., Vicente, A. M. P., Calvo, A. I., Baumgardner, D., Amato, F., Querol, X., Pio, C. & Gustafsson, M. (2020). Physical and chemical properties of non-exhaust particles generated from wear between pavements and tyres. Atmospheric Environment, 224, Article 117252.
DOI 10.1016/j.atmosenv.2019.117252

Anagnosti, L., Varvaresou, A., Pavlou, P., Protopapa, E. & Carayanni, V. (2021). Worldwide actions against plastic pollution from microbeads and microplastics in cosmetics focusing on European policies. Has the issue been handled effectively? Marine Pollution Bulletin, 162, Article 111883.
DOI 10.1016/j.marpolbul.2020.111883

Baensch-Baltruschat, B., Kocher, B., Stock, F. & Reifferscheid, G. (2020). Tyre and road wear particles (TRWP) - a review of generation, properties, emissions, human health risk, ecotoxicity, and fate in the environment. Science of the Total Environment, 733, Article 137823.
DOI 10.1016/j.scitotenv.2020.137823

Barnes, D. K. A., Galgani, F., Thompson, R. C. & Barlaz, M. (2009). Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1985-1998.
DOI 10.1098%2Frstb.2008.0205

Bond, T., Ferrandiz-Mas, V., Felipe-Sotelo, M. & van Sebille, E. (2018). The occurrence and degradation of aquatic plastic litter based on polymer physicochemical properties: a review. Critical Reviews in Environmental Science and Technology, 48(7-9), 685-722.
DOI 10.1080/10643389.2018.1483155

Braithwaite, A. & Smith, F. J. (1999). Gas Chromatography In Chromatographic Methods 5th edn (pp. 165-257). Springer-Science + Business Media.
DOI 10.1007/978-94-011-0599-6_5

Camponelli, K. M., Casey, R. E., Snodgrass, J. W., Lev, S. M. & Landa, E. R. (2009). Impacts of weathered tire debris on the development of Rana sylvatica larvae. Chemosphere, 74(5), 717-722.
DOI 10.1016/j.chemosphere.2008.09.056

Cao, J., Huang, H., Jiao, R., Pei, J., Xu, Y., Ren, R. & Wang, Y. (2022). The study of wear particle emissions of soft rubber on rolling contact under braking conditions. Wear, 506-507, Article 204431.
DOI 10.1016/j.wear.2022.204431

Chae, E., Jung, U. & Choi, S. S. (2021). Quantification of tire tread wear particles in microparticles produced on the road using oleamide as a novel marker. Environmental Pollution, 288, Article 117811.
DOI 10.1016/j.envpol.2021.117811

Chen, X., He, T., Yang, X., Gan, Y., Qing, X., Wang, J. & Huang, Y. (2023). Analysis, environmental occurrence, fate and potential toxicity of tire wear compounds 6PPD and 6PPD-quinone. Journal of Hazardous Materials, 452, Article 131245.
DOI 10.1016/j.jhazmat.2023.131245

Dahms, H. U., Harder, T. & Qian, P. Y. (2007). Selective attraction and reproductive performance of a harpacticoid copepod in a response to biofilms. Journal of Experimental Marine Biology and Ecology, 341(2), 228-238.
DOI 10.1016/j.jembe.2006.10.027

Dandajeh, H. A., Talibi, M., Ladommatos, N., & Hellier, P. (2019). Influence of combustion characteristics and fuel composition on exhaust PAHs in a compression ignition engine. Energies, 12(13), 2575.
DOI 10.3390/en12132575

Dannis, M. (1974). Rubber dust from the normal wear of tyres. Rubber Chemistry and Technology, 47(4), 1011-1037.
DOI 10.5254/1.3540458

Deng, Y., Zhang, Y., Qiao, R., Bonilla, M. M., Yang, X., Ren, H., & Lemos, B. (2018). Evidence that microplastics aggravate the toxicity of organophosphorus flame retardants in mice (Mus musculus). Journal of hazardous materials, 357, 348-354.
DOI 10.1016/j.jhazmat.2018.06.017

Ding, J., Lv, M., Zhu, D., Leifheit, E. F., Chen, Q., Wang, Y., Chen, L., Rillig, M. C. & Zhu, Y. (2023). Tire wear particles: an emerging threat to soil health. Critical Reviews in Environmental Science and Technology, 53(2), 239-257.
DOI 10.1080/10643389.2022.2047581

Duda, A., Kida, M., Ziembowicz, S. & Koszelnik, P. (2020). Application of material from used car tyres in geotechnics - an environmental impact analysis. Peerj, 8, Article e9546.
DOI 10.7717/peerj.9546

Fang, R. Q., Liu, H. L., Luque, R. & Li, Y. W. (2015). Efficient and selective hydrogenation of biomass-derived furfural to cyclopentanone using Ru catalysts. Green Chemistry, 17(5), 4183-4188.
DOI 10.1039/C5GC01462J

Fischer, V., Elsner, N. O., Brenke, N., Schwabe, E. & Brandt, A. (2015). Plastic pollution of the Kuril-Kamchatka Trench area (NW pacific). Deep-Sea Research Part II: Topical Studies in Oceanography, 111, 399-405.
DOI 10.1016/j.dsr2.2014.08.012

Frias, J. P. G. L. & Nash, R. (2019). Microplastics: finding a consensus on the definition. Marine Pollution Bulletin, 138, 145-147.
DOI 10.1016/j.marpolbul.2018.11.022

Genovese, A. & Timpone, F. (2022). Vehicle Dynamics In Lenzo, B. (Ed.) Vehicle Dynamics: Fundamentals and Ultimate Trends (pp. 139-192). Springer International Publishing.
DOI 10.1007/978-3-030-75884-4_3

Genualdi, S., Harner, T., Cheng, Y., MacLeod, M., Hansen, K. M., van Egmond, R., Shoeib, M. & Lee, S. C. (2011). Global distribution of linear and cyclic volatile methyl siloxanes in air. Environmental Science & Technology, 45(8), 3349-3354.
DOI 10.1021/es200301j

Geyer, R. (2020). Production, Use and Fate of Synthetic Polymers In Letcher, T. M. (Ed.) Plastic Waste and Recycling (pp. 13-32). Academic Press.
DOI 10.1016/B978-0-12-817880-5.00002-5

Gottipolu, R. R., Landa, E. R., Schladweiler, M. C., McGee, J. K., Ledbetter, A. D., Richards, J. H., Wallenborn, G. J. & Kodavanti, U. P. (2008). Cardiopulmonary responses of intratracheally instilled tire particles and constituent metal components. Inhalation Toxicology, 20(5), 473-484.
DOI 10.1080/08958370701858427

Grieco, E., Bernardi, M. & Baldi, G. (2008). Styrene-butadiene rubber pyrolysis: products, kinetics, modelling. Journal of Analytical and Applied Pyrolysis, 82(2), 304-311.
DOI 10.1016/j.jaap.2008.05.004

Gualtieri, M., Andrioletti, M., Vismara, C., Milani, M. & Camatini, M. (2005). Toxicity of tire debris leachates. Environment International, 31(5), 723-730.
DOI 10.1016/j.envint.2005.02.001

Gualtieri, M., Mantecca, P., Cetta, F. & Camatini, M. (2008). Organic compounds in tire particle induce reactive oxygen species and heat-shock proteins in the human alveolar cell line A549. Environment International, 34(4), 437-442.
DOI 10.1016/j.envint.2007.09.010

Guzzetti, E., Sureda, A., Tejada, S. & Faggio, C. (2018). Microplastic in marine organism: environmental and toxicological effects. Environmental Toxicology and Pharmacology, 64, 164-171.
DOI 10.1016/j.etap.2018.10.009

Halle, L. L., Palmqvist, A., Kampmann, K., Jensen, A., Hansen, T. & Khan, F. R. (2021). Tire wear particle and leachate exposures from a pristine and road-worn tire to Hyalella azteca: comparison of chemical content and biological effects. Aquatic Toxicology, 232, Article 105769.
DOI 10.1016/j.aquatox.2021.105769

Han, W. W., Han, D. S. & Chen, H. B. (2023). Pyrolysis of waste tires: a review. Polymers (Basal), 15(7), Article 1604.
DOI 10.3390/polym15071604

Hermabessiere, L., Dehaut, A., Paul-Pont, I., Lacroix, C., Jezequel, R., Soudant, P. & Duflos, G. (2017). Occurrence and effects of plastic additives on marine environments and organisms: a review. Chemosphere, 182, 781-793.
DOI 10.1016/j.chemosphere.2017.05.096

Heu, R., Shahbazmohamadi, S., Yorston, J. & Capeder, P. (2019). Target material selection for sputter coating of SEM samples. Microscopy Today, 27(4), 32-36.
DOI 10.1017/S1551929519000610

Hirata, Y., Kondo, H. & Ozawa, Y. (2014). Natural Rubber (NR) for the Tyre Industry In Kohjiya, S. & Ikeda, Y (Eds.) Chemistry, Manufacture and Applications of Natural Rubber (pp. 325-352). Woodhead Publishing Ltd.
DOI 10.1533/9780857096913.2.325

Hoppe, S., Schrauwen, C., Fonteix, C., & Pla, F. (2005). Modeling of the Emulsion Terpolymerization of Styrene, α‐Methylstyrene and Methyl Methacrylate. Macromolecular Materials and Engineering, 290(4), 384-403.
DOI 10.1002/mame.200400277

Hurley, R. R. & Nizzetto, L. (2018). Fate and occurrence of micro(nano)plastics in soils: knowledge gaps and possible risks. Current Opinion in Environmental Science & Health, 1, 6-11.
DOI 10.1016/j.coesh.2017.10.006

Klockner, P., Seiwert, B., Weyrauch, S., Escher, B. I., Reemtsma, T. & Wagner, S. (2021). Comprehensive characterization of tire and road wear particles in highway tunnel road dust by use of size and density fractionation. Chemosphere, 279, Article 130530.
DOI 10.1016/j.chemosphere.2021.130530

Knight, L. J., Parker-Jurd, F. N. F., Al-Sid-Cheikh, M. & Thompson, R. C. (2020). Tyre wear particles: an abundant yet widely unreported microplastic? Environmental Science and Pollution Research, 27, 18345-18354.
DOI 10.1007/s11356-020-08187-4

Kreider, M. L., Panko, J. M., McAtee, B. L., Sweet, L. I. & Finley, B. L. (2010). Physical and chemical characterization of tire-related particles: comparison of particles generated using different methodologies. Science of the Total Environment, 408(3), 652-659.
DOI 10.1016/j.scitotenv.2009.10.016

Leistenschneider, D., Wolinksi, A., Cheng, J., ter Halle, A., Duflos, G., Huvet, A., Paul-Pont, I., Lartaud, F., Galgani, F., Laverge, E., Meistertzheim, A. & Ghiglione, J. (2023). A critical review on the evaluation of toxicity and ecological risk assessment of plastics in the marine environment. Science of the Total Environment, 896, Article 164955.
DOI 10.1016/j.scitotenv.2023.164955

Liang, R. L., Wang, W. J. & Wang, G. Z. (2021, August 9-11). Research on the key influencing factors of road wear for battery electric vehicles tyres (pp. 93-101). [Proceedings paper]. 2021 9th International Conference on Traffic and Logistic Engineering (ICTLE), Macau, China.
DOI 10.1109/ICTLE53360.2021.9525633

Liao, C. Y., Kim, U. J. & Kannan, K. (2018). A review of environmental occurrence, fate, exposure, and toxicity of benzothiazoles. Environmental Science & Technology, 52(9), 5007-5026.
DOI 10.1021/acs.est.7b05493

Liu, Y., Chen, H., Wu, S., Gao, J., Li, Y., An, Z., Mao, B., Tu, R. & Li, T. (2022). Impact of vehicle type, tyre feature and driving behaviour on tyre wear under real-world driving conditions. Science of the Total Environment, 842, Article 156950.
DOI 10.1016/j.scitotenv.2022.156950

Machado, A. A. D., Kloas, W., Zarfl, C., Hempel, S. & Rillig, M. C. (2018). Microplastics as an emerging threat to terrestrial ecosystems. Global Change Biology, 24(4), 1405-1416.
DOI 10.1111/gcb.14020

MacLeo, M., Arp, H. P. H., Tekman, M. B. & Jahnke, A. (2021). The global threat from plastic pollution. Science, 373(6550), 61-65.
DOI 10.1126/science.abg5433

Mavros, G. (2019). A thermo-frictional tyre model including the effect of flash temperature. Vehicle System Dynamics, 57(5), 721-751.
DOI 10.1080/00423114.2018.1484147

Miller, J. V., Maskrey, J. R., Chan, K. & Unice, K. M. (2022). Pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) quantification of tire and road wear particles (TRWP) in environmental matrices: assessing the importance of microstructure in instrument calibration protocols. Analytical Letters, 55(6), 1004-1016.
DOI 10.1080/00032719.2021.1979994

Mohamed, N. R., Othman, N., Shuib, R. K. & Hayeemasae, N. (2023). Perspective on opportunities of bio-based processing oil to rubber industry: a short review. Iranian Polymer Journal, 32, 1455-1475.
DOI 10.1007/s13726-023-01203-7

Molanorouzi, M. & Mohaved, S. O. (2016). Reclaiming waste tire rubber by an irradiation technique. Polymer Degradation and Stability, 128, 115-125.
DOI 10.1016/j.polymdegradstab.2016.03.009

Napper, I. E. & Thompson, R. C. (2020). Plastic debris in the marine environment: history and future challenges. Global Challenges, 4(6), Article 1900081.
DOI 10.1002/gch2.201900081

Nazarparvar-Noshadi, M., Yadegari, M., Mohammadian, Y. & Fakhri, Y. (2022). The exposure to BTEX/styrene and their health risk in the tire manufacturing. Toxin Reviews, 41(2), 437-445.
DOI 10.1080/15569543.2021.1891937

Ni, X., Song, J., Lu, D., Tong, H., Zhou, H., Liu, Y. & Yi, X. (2024). Effect of bioturbation of the mitten crab on distribution of tire wear particles and their combined effect on sediment ecosystem. Chemosphere, 346, 140603.
DOI 10.1016/j.chemosphere.2023.140603

Padovan, J., Prasad, N., Gerrard, D., Park, S. W. & Lindsley, N. (1999). Topology of wear particles. Rubber Chemistry and Technology, 72(2), 343-356.
DOI 10.5254/1.3538806

Pandey, S. K., Kim, K. H. & Brown, R. J. C. (2011). A review of techniques for the determination of polycyclic aromatic hydrocarbons in air. Trends in Analytical Chemistry, 30(11), 1716-1739.
DOI 10.1016/j.trac.2011.06.017

Ramkumar, M., Balasubramani, K., Santosh, M. & Nagarajan, R. (2022). The plastisphere: a morphometric genetic classification of plastic pollutants in the natural environment. Gondwana Research, 108, 4-12.
DOI 10.1016/j.gr.2021.07.004

Rasmussen, S. C. (2021). From Parkesine to Celluloid: the birth of organic plastics. Angewandte Chemie International Edition, 60(15), 8012-8016.
DOI 10.1002/anie.202015095

Rauert, C., Charlton, N., Okoffo, E. D., Stanton, R. S., Agua, A. R., Pirrung, M. C. & Thomas, K. V. (2022). Concentrations of tire additive chemicals and tire road wear particles in an Australian urban tributary. Environmental Science & Technology, 56(4), 2421-2431.
DOI 10.1021/acs.est.1c07451

Richter, H., & Howard, J. B. (2000). Formation of polycyclic aromatic hydrocarbons and their growth to soot—a review of chemical reaction pathways. Progress in Energy and Combustion science, 26(4-6), 565-608.
DOI 10.1016/S0360-1285(00)00009-5

Rochman, C. M., Kross, S. M., Armstrong, J. B., Bogan, M. T., Darling, E. S., Green, S. J., Smyth, A. R. & Verissimo, D. (2015). Scientific evidence supports a ban on microbeads. Environmental Science & Technology, 49(18), 10759-10761.
DOI 10.1021/acs.est.5b03909

Saha, M., Takada, H. & Bhattacharya, B. (2012). Establishing criteria of relative abundance of alkyl polycyclic aromatic hydrocarbons (PAHs) for differentiation of pyrogenic and petrogenic PAHs: an application to indian sediment. Environmental Forensics, 13(4), 312-331.
DOI 10.1080/15275922.2012.729005

Shin, H., Jeong, S., Hong, J., Wi, E., Park, E., Yang, S. I., Kwon, J., Lee, H., Lee, J. & Kim, Y. (2023). Rapid generation of aged tire-wear particles using dry-, wet-, and cryo-milling for ecotoxicity testing. Environmental Pollution, 330, Article 121787.
DOI 10.1016/j.envpol.2023.121787

Sommer, F., Dietza, V., Baum, A., Sauer, J., Gilge, S., Maschowski, C. & Giere, R. (2018). Tire abrasion as a major source of microplastics in the environment. Aerosol and Air Quality Research, 18, 2014-2028.
DOI 10.4209/aaqr.2018.03.0099

Son, C. E. & Choi, S. S. (2022). Preparation and characterization of model tire-road wear particles. Polymers (Basel), 14(8), Article 1512.
DOI 10.3390/polym14081512

Tanaka, K., Takada, H., Yamashita, R., Mizukawa, K., Fukawaka, M. & Watanuki, Y. (2013). Accumulation of plastic-derived chemicals in tissues of seabirds ingesting marine plastics. Marine Pollution Bulletin, 69(1-2), 219-222.
DOI 10.1016/j.marpolbul.2012.12.010

Thompson, R. C., Olsen, Y., Mitchell, R. P., Davis, A., Rowland, S. J., John, A. W. G., McGonigle, D. & Russell, A. E. (2004). Lost at sea: where is all the plastic? Science, 304(5672), 838-838.
DOI 10.1126/science.1094559

Tudor, V. C., Mocuta, D. N., Teodorescu, R. F. & Smedescu, D. I. (2019). The issue of plastic and microplastic pollution in soil. Materiale Plastice, 56(3), 484-487.
DOI 10.37358/MP.19.3.5214

Valdes, H., Zaror, C. A. & Jekel, M. (2016). Removal of benzothiazole from contaminated waters by ozonation: the role of direct and indirect ozone reactions. Journal of Advanced Oxidation Techniques, 19(2), 338-346.
DOI 10.1515/jaots-2016-0218

Veiga, V. D., Rossignol, T. M., Crespo, J. D. & Carli, L. N. (2017). Tire tread compounds with reduced rolling resistance and improved wet grip. Journal of Applied Polymer Science, 134(39), Article 45334


DOI 10.1002/app.45334

Wagner, S., Huffer, T., Klockner, P., Wehrhahn, Hofmann, T. & Reemtsma, T. (2018). Tire wear particles in the aquatic environment - a review on generation, analysis, occurrence, fate and effects. Water Research, 139, 83-100.
DOI 10.1016/j.watres.2018.03.051

Wagner, S., Klöckner, P. & Reemtsma, T. (2022). Aging of tire and road wear particles in terrestrial and freshwater environments - a review on processes, testing, analysis and impact. Chemosphere, 288(2), Article 132467.
DOI 10.1016/j.chemosphere.2021.132467

Wang, C. H., Zhao, J. & Xing, B. S. (2021). Environmental source, fate, and toxicity of microplastics. Journal of Hazardous Materials, 407, Article 124357.
DOI 10.1016/j.jhazmat.2020.124357

Wik, A. & Dave, G. (2009). Occurrence and effects of tire wear particles in the environment - a critical review and an initial risk assessment. Environmental Pollution, 157(1), 1-11.
DOI 10.1016/j.envpol.2008.09.028