an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU

A REVIEW OF POTENTIAL PHYSICAL AND CHEMICAL MARKERS FOR TYRE AND ROAD WEAR PARTICLES

  • Zainab Tariq - School of Engineering, University of Southampton, United Kingdom of Great Britain and Northern Ireland
  • Ian D. Williams - School of Engineering, University of Southampton, United Kingdom of Great Britain and Northern Ireland
  • Andrew Cundy - 3GAU-Radioanalytics, School of Ocean and Earth Science, National Oceanography Centre, University of Southampton, United Kingdom of Great Britain and Northern Ireland
  • Lina Maria Zapata-Restrepo - School of Engineering, University of Southampton - Highfield Campus, United Kingdom of Great Britain and Northern Ireland
  • Malcolm Hudson - Faculty of Engineering and Life Sciences, University of Southampton, United Kingdom of Great Britain and Northern Ireland

Access restricted to subscribed members only

Released under All rights reserved

Copyright: © 2024 CISA Publisher


Abstract

Plastic pollution poses a substantial environmental challenge on global scale. Recently, tyre and road wear particles (TRWPs) have been recognized as a source of microplastic pollution to the freshwater environment. Whilst there is a growing concern regarding the potential environmental effects of microplastics, TRWPs are especially concerning because of the additives they have. These additives are utilised in the manufacturing of tyres; persist in the final product; become environmentally available; and may pose significant threats to an ecosystem. A current issue is the identification of specific constituents of TRWPs responsible for these threats. A comprehensive review of the existing literature is presented focusing on the physical and chemical characteristics of TRWPs with the aim to identify suitable marker(s). Wear particles derived from tyre tread possess distinctive a sausage shape that is exclusive to TRWPs. A range of chemical additives linked to tyres have been employed to quantify TRWPs, overlooking other potential sources such as brake wear and exhaust emissions. We found that significant amounts of 6PPD is used for the formulation of tyres, which is why 6PPD, and a comparatively stable transformation product 6PPD-quinone, could be used for the identification of TRWPs. We recommend that sampling and analysis methods be thoroughly documented to enhance the reproducibility.

Keywords


Editorial History

  • Received: 07 May 2024
  • Revised: 02 Aug 2024
  • Accepted: 26 Aug 2024
  • Available online: 19 Nov 2024

References

Adachi, K. and Tainosho, Y., (2004). Characterization of heavy metal particles embedded in tire dust. Environment International, 30(8), pp.1009-1017.
DOI 10.1016/j.envint.2004.04.004

Alves, C.A., Vicente, A.M.P., Calvo, A.I., Baumgardner, D., Amato, F., Querol, X., Pio, C. and Gustafsson, M., (2020). Physical and chemical properties of non-exhaust particles generated from wear between pavements and tyres. Atmospheric Environment, 224, p.117252.
DOI 10.1016/j.atmosenv.2019.117252

Amirav, A., Fialkov, A., Margolin Eren, K., Neumark, B., Elkabets, O., Tsizin, S., Gordin, A. and Alon, T., (2020). Gas chromatography–mass spectrometry (GC–MS) with cold electron ionization (EI): bridging the gap between GC–MS and LC–MS. LCGC Supplements, 18(4), pp.5-15. https://www.spectroscopyonline.com/view/gas-chromatography-mass-spectrometry-gc-ms-with-cold-electron-ionization-ei-bridging-the-gap-between-gc-ms-and-lc-ms

Asimakopoulos, A.G., Ajibola, A., Kannan, K. and Thomaidis, N.S., (2013). Occurrence and removal efficiencies of benzotriazoles and benzothiazoles in a wastewater treatment plant in Greece. Science of the Total Environment, 452, pp.163-171.
DOI 10.1016/j.scitotenv.2013.02.041

Avagyan, R., Luongo, G., Thorsén, G. and Östman, C., (2015). Benzothiazole, benzotriazole, and their derivates in clothing textiles—a potential source of environmental pollutants and human exposure. Environmental Science and Pollution Research, 22, pp.5842-5849.
DOI 10.1007/s11356-014-3691-0

Awad, H., Khamis, M.M. and El-Aneed, A., (2015). Mass spectrometry, review of the basics: ionization. Applied Spectroscopy Reviews, 50(2), pp.158-175.
DOI 10.1080/05704928.2014.954046

Baensch-Baltruschat, B., Kocher, B., Stock, F. and Reifferscheid, G., (2020). Tyre and road wear particles (TRWP) - A review of generation, properties, emissions, human health risk, ecotoxicity, and fate in the environment. Science of the Total Environment, 733, p.137823.
DOI 10.1016/j.scitotenv.2020.137823

Beauchemin, S., Levesque, C., Wiseman, C.L. and Rasmussen, P.E., (2021). Quantification and characterization of metals in ultrafine road dust particles. Atmosphere, 12(12), p.1564.
DOI 10.3390/atmos12121564

Beddows, D.C., Harrison, R.M., Gonet, T., Maher, B.A. and Odling, N., (2023). Measurement of road traffic brake and tyre dust emissions using both particle composition and size distribution data. Environmental Pollution, 331, p.121830.
DOI 10.1016/j.envpol.2023.121830

Beji, A., Deboudt, K., Muresan, B., Khardi, S., Flament, P., Fourmentin, M. and Lumiere, L., (2023). Physical and chemical characteristics of particles emitted by a passenger vehicle at the tire-road contact. Chemosphere, 340, p.139874.
DOI 10.1016/j.chemosphere.2023.139874

Benson, K., Irvin-Barnwell, E., Ragin-Wilson, A. and Breysse, P., (2019). Federal Research Action Plan on Recycled Tire Crumb Used on Playing Fields: Tire Crumb Rubber Characterization and Exposure Characterization Study Overview. Journal of Environmental Health, 82(2), p.28-30. http://www.ncbi.nlm.nih.gov/pubmed/34092808

Boogaard, H., Samoli, E., Patton, A.P., Atkinson, R.W., Brook, J.R., Chang, H.H., Hoffmann, B., Joss, M.K., Sagiv, S.K., Smargiassi, A. and Szpiro, A.A., (2023). Long-term exposure to traffic-related air pollution and non-accidental mortality: A systematic review and meta-analysis. Environment international, 176, p.107916.
DOI 10.1016/j.envint.2023.107916

Borowska, E., Felis, E. and Kalka, J., (2016). Oxidation of benzotriazole and benzothiazole in photochemical processes: Kinetics and formation of transformation products. Chemical Engineering Journal, 304, pp.852-863.
DOI 10.1016/j.cej.2016.06.123

Cao, G., Wang, W., Zhang, J., Wu, P., Zhao, X., Yang, Z., Hu, D. and Cai, Z., (2022). New evidence of rubber-derived quinones in water, air, and soil. Environmental Science & Technology, 56(7), pp.4142-4150.
DOI 10.1021/acs.est.1c07376

Changarnier, S., Hichri, Y., Cerezo, V., Do, M.T., Salvatore, F. and Zahouani, H., (2018). Observations of dry particles behaviour at the tyre/road interface. Tribology International, 128, pp.291-301.
DOI 10.1016/j.triboint.2018.07.023

Charron, A., Polo-Rehn, L., Besombes, J.L., Golly, B., Buisson, C., Chanut, H., Marchand, N., Guillaud, G. and Jaffrezo, J.L., (2019). Identification and quantification of particulate tracers of exhaust and non-exhaust vehicle emissions. Atmospheric Chemistry and Physics, 19(7), pp.5187-5207.
DOI 10.5194/acp-19-5187-2019

Choi, J.Y., Jeong, H., Choi, K.Y., Hong, G.H., Yang, D.B., Kim, K. and Ra, K., (2020). Source identification and implications of heavy metals in urban roads for the coastal pollution in a beach town, Busan, Korea. Marine Pollution Bulletin, 161, p.111724.
DOI 10.1016/j.marpolbul.2020.111724

Continental. (2023, March 3). Tire mixture. https://www.continental-tires.com/car/tire-knowledge/tirebasics/tire-mixture

Cunningham, B., Harper, B., Brander, S. and Harper, S., (2022). Toxicity of micro and nano tire particles and leachate for model freshwater organisms. Journal of Hazardous Materials, 429, p.128319.
DOI 10.1016/j.jhazmat.2022.128319

Dahl, A., Gharibi, A., Swietlicki, E., Gudmundsson, A., Bohgard, M., Ljungman, A., Blomqvist, G. and Gustafsson, M., (2006). Traffic-generated emissions of ultrafine particles from pavement–tire interface. Atmospheric Environment, 40(7), pp.1314-1323.
DOI 10.1016/j.atmosenv.2005.10.029

Dall’Osto, M., Beddows, D.C., Gietl, J.K., Olatunbosun, O.A., Yang, X. and Harrison, R.M., (2014). Characteristics of tyre dust in polluted air: Studies by single particle mass spectrometry (ATOFMS). Atmospheric Environment, 94, pp.224-230.
DOI 10.1016/j.atmosenv.2014.05.026

Dobrotă, D., Dobrotă, G. and Dobrescu, T., (2020). Improvement of waste tyre recycling technology based on a new tyre markings. Journal of Cleaner Production, 260, p.121141.
DOI 10.1016/j.jclepro.2020.121141

Du, B., Liang, B., Li, Y., Shen, M., Liu, L.Y. and Zeng, L., (2022). First report on the occurrence of N-(1, 3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD) and 6PPD-quinone as pervasive pollutants in human urine from south China. Environmental Science and Technology Letters, 9(12), pp.1056-1062.
DOI 10.1021/acs.estlett.2c00821

Fauser, P., Tjell, J.C., Mosbaek, H. and Pilegaard, K., (1999). Quantification of tire-tread particles using extractable organic zinc as tracer. Rubber Chemistry and Technology, 72(5), pp.969-977.
DOI 10.5254/1.3538846

Fohet, L., Andanson, J.M., Charbouillot, T., Malosse, L., Leremboure, M., Delor-Jestin, F. and Verney, V., (2023). Time-concentration profiles of tire particle additives and transformation products under natural and artificial aging. Science of The Total Environment, 859, p.160150.
DOI 10.1016/j.scitotenv.2022.160150

Ghaidan, H.Q. and Al-Easawi, N.A.F., (2019). Histological Changes in the Lung and Liver of Mice Treated with Brake Pad Particles. Baghdad Science Journal, 16(2), pp.306-314.
DOI 10.21123/bsj.2019.16.2.0306

Gigli, S., Landi, D. and Germani, M., (2019). Cost-benefit analysis of a circular economy project: A study on a recycling system for end-of-life tyres. Journal of Cleaner Production, 229, pp.680-694.
DOI 10.1016/j.jclepro.2019.03.223

Grammelis, P., Margaritis, N., Dallas, P., Rakopoulos, D. and Mavrias, G., (2021). A review on management of end of life tires (ELTs) and alternative uses of textile Fibers. Energies, 14(3), p.571.
DOI 10.3390/en14030571

Greer, J.B., Dalsky, E.M., Lane, R.F. and Hansen, J.D., (2023). Tire-derived transformation product 6PPD-quinone induces mortality and transcriptionally disrupts vascular permeability pathways in developing coho salmon. Environmental Science & Technology, 57(30), pp.10940-10950.
DOI 10.1021/acs.est.3c01040

Grynkiewicz-Bylina, B., Rakwic, B. and Słomka-Słupik, B., (2022). Tests of rubber granules used as artificial turf for football fields in terms of toxicity to human health and the environment. Scientific Reports, 12(1), pp.1-13.
DOI 10.1038/s41598-022-10691-1

Güney, B. and Ali, Ö.Z., (2020). Microstructure and chemical analysis of vehicle brake wear particle emissions. Avrupa Bilim ve Teknoloji Dergisi, 19, pp.633-642.
DOI 10.31590/ejosat.744098

Gustafsson, M. and Johansson, C., (2012). Road pavements and PM10: summary of the results of research funded by the Swedish Transport Administration on how the properties of road pavements influence emissions and the properties of wear particles. Borlänge: Trafikverket. https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A674206&dswid=3576. (DoLA: 03003/2024)

Hiki, K. and Yamamoto, H., (2022). Concentration and leachability of N-(1, 3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD) and its quinone transformation product (6PPD-Q) in road dust collected in Tokyo, Japan. Environmental Pollution, 302, p.119082.
DOI 10.1016/j.envpol.2022.119082

Hooftman, N., Oliveira, L., Messagie, M., Coosemans, T. and Van Mierlo, J., (2016). Environmental analysis of petrol, diesel and electric passenger cars in a Belgian urban setting. Energies, 9(2), p.84.
DOI 10.3390/en9020084

Hopke, P.K., Lamb, R.E., Natusch, D.F.S., (1980). Multielemental characterization of urban roadway dust. Environmental Science and Technology, 14(2), 164–172.
DOI 10.1021/es60162a006

Hsu, C.S. and Robinson, P.R., (2017). Petroleum Distillation. Springer Handbook of Petroleum Technology. Argentina: Springer, pp.533-550.

Huang, W., Song, B., Liang, J., Niu, Q., Zeng, G., Shen, M., Deng, J., Luo, Y., Wen, X. and Zhang, Y., (2021). Microplastics and associated contaminants in the aquatic environment: A review on their ecotoxicological effects, trophic transfer, and potential impacts to human health. Journal of Hazardous Materials, 405, p.124187.
DOI 10.1016/j.jhazmat.2020.124187

Hüffer, T., Wagner, S., Reemtsma, T. and Hofmann, T., (2019). Sorption of organic substances to tire wear materials: similarities and differences with other types of microplastic. TrAC Trends in Analytical Chemistry, 113, pp.392-401.
DOI 10.1016/j.trac.2018.11.029

Hulskotte, J.H.J., Roskam, G.D. and Van Der Gon, H.D., (2014). Elemental composition of current automotive braking materials and derived air emission factors. Atmospheric Environment, 99, pp.436-445.
DOI 10.1016/j.atmosenv.2014.10.007

Hussain, S., Hamid, M.A., Lazim, A.M. and Bakar, A.A., (2014). Brake wear particle size and shape analysis of non-asbestos organic (NAO) and semi metallic brake pad. Jurnal Teknologi, 71(2), 129-134.
DOI 10.11113/jt.v71.3731

Iglesias-Émbil, M., Valero, A., Ortego, A., Villacampa, M., Vilaró, J. and Villalba, G., (2020). Raw material use in a battery electric car–a thermodynamic rarity assessment. Resources, Conservation and Recycling, 158, p.104820.
DOI 10.1016/j.resconrec.2020.104820

Järlskog, I., Strömvall, A.M., Magnusson, K., Gustafsson, M., Polukarova, M., Galfi, H., Aronsson, M. and Andersson-Sköld, Y., (2020). Occurrence of tire and bitumen wear microplastics on urban streets and in sweeps and washwater. Science of the Total Environment, 729, p.138950.
DOI 10.1016/j.scitotenv.2020.138950

Jeong, Y., Lee, S. and Woo, S.H., (2022). Chemical Leaching from Tire Wear Particles with Various Treadwear Ratings. International Journal of Environmental Research and Public Health, 19(10), p.6006.
DOI 10.3390/ijerph19106006

Johannessen, C., Helm, P. and Metcalfe, C.D., (2021). Detection of selected tire wear compounds in urban receiving waters. Environmental Pollution, 287, p.117659.
DOI 10.1016/j.envpol.2021.117659

Jung, U. and Choi, S.S., (2022). Classification and Characterization of Tire-Road Wear Particles in Road Dust by Density. Polymers, 14(5), pp.1005.
DOI 10.3390/polym14051005

Kähkönen, E. and Nordström, K., (2008). Toward a nontoxic poison: current trends in (European Union) biocides regulation. Integrated Environmental Assessment and Management, 4(4), pp.471-477.
DOI 10.1897/IEAM_2008-021.1

Klöckner, P., Reemtsma, T., Eisentraut, P., Braun, U., Ruhl, A.S. and Wagner, S., (2019). Tire and road wear particles in road environment–Quantification and assessment of particle dynamics by Zn determination after density separation. Chemosphere, 222, pp.714-721.
DOI 10.1016/j.chemosphere.2019.01.176

Klöckner, P., Seiwert, B., Weyrauch, S., Escher, B.I., Reemtsma, T. and Wagner, S., (2021). Comprehensive characterization of tire and road wear particles in highway tunnel road dust by use of size and density fractionation. Chemosphere, 279, p.130530.
DOI 10.1016/j.chemosphere.2021.130530

Kloepfer, A., Jekel, M. and Reemtsma, T., (2005). Occurrence, sources, and fate of benzothiazoles in municipal wastewater treatment plants. Environmental Science and Technology, 39(10), pp.3792-3798.
DOI 10.1021/es048141e

Knight, L.J., Parker-Jurd, F.N., Al-Sid-Cheikh, M. and Thompson, R.C., (2020). Tyre wear particles: an abundant yet widely unreported microplastic? Environmental Science and Pollution Research, 27, pp.18345-18354.
DOI 10.1007/s11356-020-08187-4

Kole, P.J., Löhr, A.J., Van Belleghem, F.G. and Ragas, A.M., (2017). Wear and tear of tyres: a stealthy source of microplastics in the environment. International Journal of Environmental Research and Public Health, 14(10), p.1265.
DOI 10.3390/ijerph14101265

Kovochich, M., Liong, M., Parker, J.A., Oh, S.C., Lee, J.P., Xi, L., Kreider, M.L. and Unice, K.M., (2021). Chemical mapping of tire and road wear particles for single particle analysis. Science of The Total Environment, 757, p.144085.
DOI 10.1016/j.scitotenv.2020.144085

Kowalska, K., Felis, E., Sochacki, A. and Bajkacz, S., (2019). Removal and transformation pathways of benzothiazole and benzotriazole in membrane bioreactors treating synthetic municipal wastewater. Chemosphere, 227, pp.162-171.
DOI 10.1016/j.chemosphere.2019.04.037

Kreider, M.L., Panko, J.M., McAtee, B.L., Sweet, L.I. and Finley, B.L., (2010). Physical and chemical characterization of tire-related particles: Comparison of particles generated using different methodologies. Science of the Total Environment, 408(3), pp.652-659.
DOI 10.1016/j.scitotenv.2009.10.016

Küçükosman, R., Yontar, A.A. and Ocakoglu, K., (2023). Experimental studies on combustion and atomization characteristics of aliphatic and aromatic hydrocarbons droplets. Journal of the Energy Institute, 108, p.101249.
DOI 10.1016/j.joei.2023.101249

Kumata, H., Sanada, Y., Takada, H. and Ueno, T., (2000). Historical trends of N-cyclohexyl-2-benzothiazolamine, 2-(4-morpholinyl) benzothiazole, and other anthropogenic contaminants in the urban reservoir sediment core. Environmental Science and Technology, 34(2), pp.246-253.
DOI 10.1021/es990738k

Kwak, J., Lee, S. and Lee, S., (2014). On-road and laboratory investigations on non-exhaust ultrafine particles from the interaction between the tire and road pavement under braking conditions. Atmospheric Environment, 97, pp.195-205.
DOI 10.1016/j.atmosenv.2014.08.014

LaPlaca, S.B. and van den Hurk, P., (2022). Accumulation of mciroplastic and microrubber particles in stormwater pond fish and invertebrates. bioRxiv.
DOI 10.1101/2022.03.03.482888

Lee, H., Ju, M. and Kim, Y., (2020). Estimation of emission of tire wear particles (TWPs) in Korea. Waste Management, 108, pp.154-159.
DOI 10.1016/j.wasman.2020.04.037

Lee, S., Kwak, J., Kim, H. and Lee, J., (2013). Properties of roadway particles from interaction between the tire and road pavement. International Journal of Automotive Technology, 14(1), pp.163-173.
DOI 10.1007/s12239−013−0018−y

Liu, Y., Chen, H., Li, Y., Gao, J., Dave, K., Chen, J., Li, T. and Tu, R., (2022). Exhaust and non-exhaust emissions from conventional and electric vehicles: A comparison of monetary impact values. Journal of Cleaner Production, 331, p.129965.
DOI 10.1016/j.jclepro.2021.129965

Lubura, J., Kojić, P., Pavličević, J., Ikonić, B., Balaban, D. and Bera, O., (2023). A Novel Approach for Simulation and Optimization of Rubber Vulcanization. Polymers, 15(7), p.1750.
DOI 10.3390/polym15071750

Luo, Z., Zhou, X., Su, Y., Wang, H., Yu, R., Zhou, S., Xu, E.G. and Xing, B., (2021). Environmental occurrence, fate, impact, and potential solution of tire microplastics: Similarities and differences with tire wear particles. Science of the Total Environment, 795, pp.148902.
DOI 10.1016/j.scitotenv.2021.148902

Luongo, G., Avagyan, R., Hongyu, R. and Östman, C., (2016). The washout effect during laundry on benzothiazole, benzotriazole, quinoline, and their derivatives in clothing textiles. Environmental Science and Pollution Research, 23(3), pp.2537-2548.
DOI 10.1007/s11356-015-5405-7

Marković, G., Marinović-Cincović, M., Samaržija-Jovanović, S., Jovanović, V. and Budinski-Simendić, J., (2020). ‘Crosslinking of polymers: rubber vulcanization’: Reactive and Functional Polymers Volume Two. Argentina: Springer, pp.117-134.
DOI 10.1007/978-3-030-45135-6_1

Marwood, C., McAtee, B., Kreider, M., Ogle, R.S., Finley, B., Sweet, L. and Panko, J., (2011). Acute aquatic toxicity of tire and road wear particles to alga, daphnid, and fish. Ecotoxicology, 20(8), pp.2079-2089.
DOI 10.1007/s10646-011-0750-x

Mathissen, M., Scheer, V., Vogt, R. and Benter, T., (2011). Investigation on the potential generation of ultrafine particles from the tire–road interface. Atmospheric Environment, 45(34), pp.6172-6179.
DOI 10.1016/j.atmosenv.2011.08.032

Mattonai, M., Nacci, T. and Modugno, F., (2022). Analytical strategies for the quali-quantitation of tire and road wear particles–A critical review. TrAC Trends in Analytical Chemistry, 154, pp.116650.
DOI 10.1016/j.trac.2022.116650

Mavukwana, A.E. and Sempuga, C., (2022). Recent developments in waste tyre pyrolysis and gasification processes. Chemical Engineering Communications, 209(4), pp.485-511.
DOI 10.1080/00986445.2020.1864624

Mayer, P. M., Moran, K. D., Miller, E. L., Brander, S. M., Harper, S., Garcia-Jaramillo, M & Mendez, M. (2024). Where the rubber meets the road: Emerging environmental impacts of Tire Wear particles and their chemical cocktails. Science of the Total Environment, 171153.
DOI 10.1016/j.scitotenv.2024.171153

Mennekes, D. and Nowack, B., (2022). Tire wear particle emissions: Measurement data where are you? Science of The Total Environment, 830, pp.154655.
DOI 10.1016/j.scitotenv.2022.154655

Milani, M., Pucillo, F.P., Ballerini, M., Camatini, M., Gualtieri, M. and Martino, S., 2004. First evidence of tyre debris characterization at the nanoscale by focused ion beam. Materials Characterization, 52(4-5), pp.283-288.
DOI 10.1016/j.matchar.2004.06.001

Miller, J.V., Chan, K. and Unice, K.M., (2022). Evaluation of three pyrolyzer technologies for quantitative pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) of tire tread polymer in an artificial sediment matrix. Environmental Advances, 8, p.100213.
DOI 10.1016/j.envadv.2022.100213

More, S.L., Miller, J.V., Thornton, S.A., Chan, K., Barber, T.R. and Unice, K.M., (2023). Refinement of a microfurnace pyrolysis-GC–MS method for quantification of tire and road wear particles (TRWP) in sediment and solid matrices. Science of the Total Environment, 874, p.162305.
DOI 10.1016/j.scitotenv.2023.162305

Müller, A., Kocher, B., Altmann, K. and Braun, U., (2022). Determination of tire wear markers in soil samples and their distribution in a roadside soil. Chemosphere, 294, p.133653.
DOI 10.1016/j.chemosphere.2022.133653

Müller, K., Hübner, D., Huppertsberg, S., Knepper, T. P., & Zahn, D. (2022a). Probing the chemical complexity of tires: Identification of potential tire-borne water contaminants with high-resolution mass spectrometry. Science of The Total Environment, 802, 149799.
DOI 10.1016/j.scitotenv.2021.149799

Nopmongcol, U., Grant, J., Knipping, E., Alexander, M., Schurhoff, R., Young, D., Jung, J., Shah, T. and Yarwood, G., (2017). Air quality impacts of electrifying vehicles and equipment across the United States. Environmental Science & Technology, 51(5), pp.2830-2837.
DOI 10.1021/acs.est.6b04868

Nzila, A., (2018). Current status of the degradation of aliphatic and aromatic petroleum hydrocarbons by thermophilic microbes and future perspectives. International Journal of Environmental Research and Public Health, 15(12), p.2782.
DOI 10.3390/ijerph15122782

Ogbunuzor, C., Fransen, L.F.H., Talibi, M., Khan, Z., Dalzell, A., Laycock, A., Southern, D., Eveleigh, A., Ladommatos, N., Hellier, P. and Leonard, M.O., (2023). Biodiesel exhaust particle airway toxicity and the role of polycyclic aromatic hydrocarbons. Ecotoxicology and Environmental Safety, 259, p.115013.
DOI 10.1016/j.ecoenv.2023.115013

O’Loughlin, D.P., Haugen, M.J., Day, J., Brown, A.S., Braysher, E.C., Molden, N., Willis, A.E., MacFarlane, M. and Boies, A.M., (2023). Multi-element Analysis of Tyre Rubber for Metal Tracers. Environment International, 178(1), p.108047.
DOI 10.2166/wst.2024.003

Page, M.J., McKenzie, J.E., Bossuyt, P.M., Boutron, I., Hoffmann, T.C., Mulrow, C.D., Shamseer, L., Tetzlaff, J.M., Akl, E.A., Brennan, S.E. and Chou, R., (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. International Journal of Surgery, 88, p.105906.
DOI 10.1016/j.ijsu.2021.105906

Park, I., Kim, H. and Lee, S., (2018). Characteristics of tire wear particles generated in a laboratory simulation of tire/road contact conditions. Journal of Aerosol Science, 124, pp.30-40.
DOI 10.1016/j.jaerosci.2018.07.005

Park, I., Lee, J. and Lee, S., (2017). Laboratory study of the generation of nanoparticles from tire tread. Aerosol Science and Technology, 51(2), pp.188-197.
DOI 10.1080/02786826.2016.1248757

Parker, B.W., Beckingham, B.A., Ingram, B.C., Ballenger, J.C., Weinstein, J.E. and Sancho, G., (2020). Microplastic and tire wear particle occurrence in fishes from an urban estuary: Influence of feeding characteristics on exposure risk. Marine Pollution Bulletin, 160, pp.111539.
DOI 10.1016/j.marpolbul.2020.111539

Parker-Jurd, F.N., Napper, I.E., Abbott, G.D., Hann, S. and Thompson, R.C., (2021). Quantifying the release of tyre wear particles to the marine environment via multiple pathways. Marine Pollution Bulletin, 172, pp.112897.
DOI 10.1016/j.marpolbul.2021.112897

Peter, K.T., Tian, Z., Wu, C., Lin, P., White, S., Du, B., McIntyre, J.K., Scholz, N.L. and Kolodziej, E.P., (2018). Using high-resolution mass spectrometry to identify organic contaminants linked to urban stormwater mortality syndrome in coho salmon. Environmental Science and Technology, 52(18), pp.10317-10327.
DOI 10.1021/acs.est.8b03287

Pohrt, R., (2019). Tire wear particle hot spots–review of influencing factors. Facta Universitatis, Series: Mechanical Engineering, 17(1), pp.17-27.
DOI 10.22190/FUME190104013P

Rahimi, M., Bortoluzzi, D. and Wahlström, J., (2021). Input parameters for airborne brake wear emission simulations: a comprehensive review. Atmosphere, 12(7), p.871.
DOI 10.3390/atmos12070871

Rausch, J., Jaramillo-Vogel, D., Perseguers, S., Schnidrig, N., Grobéty, B. and Yajan, P., (2022). Automated identification and quantification of tire wear particles (TWP) in airborne dust: SEM/EDX single particle analysis coupled to a machine learning classifier. Science of The Total Environment, 803, p.149832.
DOI 10.1016/j.scitotenv.2021.149832

Reddy, C.M. and Quinn, J.G., (1997). Environmental chemistry of benzothiazoles derived from rubber. Environmental science and technology, 31(10), pp.2847-2853.
DOI 10.1021/es970078o

Rodgers, B. and Waddell, W., (2005). The science of rubber compounding: The Science and Technology of Rubber. 3rd ed. Houston: Brendan Rodgers and Walter Waddell, pp. 401-454.
DOI 10.1016/B978-012464786-2/50012-2

Rogge, W.F., Hildemann, L.M., Mazurek, M.A., Cass, G.R. and Simoneit, B.R., (1993). Sources of fine organic aerosol. 3. Road dust, tire debris, and organometallic brake lining dust: roads as sources and sinks. Environmental Science and Technology, 27(9), pp.1892-1904.
DOI 10.1021/es00046a019

Rødland, E.S., Lind, O.C., Reid, M., Heier, L.S., Skogsberg, E., Snilsberg, B., Gryteselv, D. and Meland, S., (2022). Characterization of Tire and Road Wear Microplastic Particle Contamination in a Road Tunnel: From Surface to Release. Journal of Hazardous Materials, 435, pp.129032.
DOI 10.1016/j.jhazmat.2022.129032

Saito, T., (1989). Determination of styrene-butadiene and isoprene tire tread rubbers in piled particulate matter. Journal of Analytical and Applied Pyrolysis, 15, pp.227-235.
DOI 10.1016/0165-2370(89)85036-3

Seiwert, B., Nihemaiti, M., Troussier, M., Weyrauch, S., & Reemtsma, T. (2022). Abiotic oxidative transformation of 6-PPD and 6-PPD quinone from tires and occurrence of their products in snow from urban roads and in municipal wastewater. Water Research, 212, pp. 118122.
DOI 10.1016/j.watres.2022.118122

Sharj-Sharifi, M., Taghvaei-Ganjali, S. and Motiee, F., (2020). The effect of protecting waxes on staining antidegradant performance in tyre sidewall formulation. Journal of Rubber Research, 23, pp.111-124.
DOI 10.1007/s42464-020-00042-y

Sharma, M., (2010). Polycyclic aromatic hydrocarbons, elemental and organic carbon emissions from tire-wear. Science of the Total Environment, 408(20), pp.4563-4568.
DOI 10.1016/j.scitotenv.2010.06.011

Sibeko, M.A., Adeniji, A.O., Okoh, O.O. and Hlangothi, S.P., (2020). Trends in the management of waste tyres and recent experimental approaches in the analysis of polycyclic aromatic hydrocarbons (PAHs) from rubber crumbs. Environmental Science and Pollution Research, 27, pp.43553-43568.
DOI 10.1007/s11356-020-09703-2

Sommer, F., Dietze, V., Baum, A., Sauer, J., Gilge, S., Maschowski, C. and Gieré, R., (2018). Tire abrasion as a major source of microplastics in the environment. Aerosol and Air Quality Research, 18(8), pp.2014-2028.
DOI 10.4209/aaqr.2018.03.0099

Timmers, V.R. and Achten, P.A., (2016). Corrigendum to” Non-exhaust PM emissions from electric vehicles”. Atmospheric Environment, 147, pp.492-492.
DOI 10.1016/j.atmosenv.2016.03.017

Unice, K.M., Weeber, M.P., Abramson, M.M., Reid, R.C.D., van Gils, J.A.G., Markus, A.A., Vethaak, A.D. and Panko, J.M., (2019). Characterizing export of land-based microplastics to the estuary-Part I: Application of integrated geospatial microplastic transport models to assess tire and road wear particles in the Seine watershed. Science of the Total Environment, 646, pp.1639-1649.
DOI 10.1016/j.scitotenv.2018.07.368

Unice, K.M., Bare, J.L., Kreider, M.L. and Panko, J.M., (2015). Experimental methodology for assessing the environmental fate of organic chemicals in polymer matrices using column leaching studies and OECD 308 water/sediment systems: application to tire and road wear particles. Science of the Total Environment, 533, pp.476-487.
DOI 10.1016/j.scitotenv.2015.06.053

Unice, K.M., Kreider, M.L. and Panko, J.M., (2013). Comparison of tire and road wear particle concentrations in sediment for watersheds in France, Japan, and the United States by quantitative pyrolysis GC/MS analysis. Environmental Science and Technology, 47(15), pp.8138-8147.
DOI 10.1021/es400871j

Varshney, S., Gora, A.H., Siriyappagouder, P., Kiron, V. and Olsvik, P.A., (2022). Toxicological effects of 6PPD and 6PPD quinone in zebrafish larvae. Journal of Hazardous Materials, 424, p.127623.
DOI 10.1016/j.jhazmat.2021.127623

Venkatachalam, P., Jayashree, R., Rekha, K., Sushmakumari, S., Sobha, S., Jayasree, P.K., Kala, R.G. and Thulaseedharan, A., (2007). Rubber Tree (Hevea brasiliensis Muell. Arg). Agrobacterium Protocols, 2, pp.153-164.
DOI 10.1385/1-59745-131-2:153

Verschoor, A., De Poorter, L., Dröge, R., Kuenen, J. and de Valk, E., (2016). Emission of microplastics and potential mitigation measures: Abrasive cleaning agents, paints and tyre wear. Netherlands: National Institute for Public Health and the Environment. https://www.rivm.nl/bibliotheek/rapporten/2016-0026

Viayna, A., Ghashghaei, O., Vilchez, D., Estarellas, C., Lopez, M., Gomez-Catalan, J., Lavilla, R., Delgado, J. and Luque, F.J., (2021). Holistic approach to anti-knock agents: A high-throughput screening of aniline-like compounds. Fuel, 305, p.121518.
DOI 10.1016/j.fuel.2021.121518

Vulimiri, S.V., Pratt, M.M., Kulkarni, S., Beedanagari, S. and Mahadevan, B., (2017). Reproductive and developmental toxicity of solvents and gases: In Reproductive and Developmental Toxicology. 2nd ed. London: Elsevier, pp. 379-396.
DOI 10.1016/B978-0-12-804239-7.00021-4

Wagner, S., Hüffer, T., Klöckner, P., Wehrhahn, M., Hofmann, T. and Reemtsma, T., (2018). Tire wear particles in the aquatic environment-a review on generation, analysis, occurrence, fate and effects. Water Research, 139, pp.83-100.
DOI 10.1016/j.watres.2018.03.051

Wagner, S., Klöckner, P. and Reemtsma, T., (2022). Aging of tire and road wear particles in terrestrial and freshwater environments–a review on processes, testing, analysis and impact. Chemosphere, 288, p.132467.
DOI 10.1016/j.chemosphere.2021.132467

Wang, C., Li, D., Zhai, T., Wang, H., Sun, Q. and Li, H., (2019). Direct conversion of waste tires into three-dimensional graphene. Energy Storage Materials, 23, pp.499-507.
DOI 10.1016/j.ensm.2019.04.014

Wang, J., Zhang, L., Duan, L. and Gao, R.X., (2017). A new paradigm of cloud-based predictive maintenance for intelligent manufacturing. Journal of Intelligent Manufacturing, 28, pp.1125-1137.
DOI 10.1007/s10845-015-1066-0

Wang, L., Asimakopoulos, A.G., Moon, H.B., Nakata, H. and Kannan, K., (2013). Benzotriazole, benzothiazole, and benzophenone compounds in indoor dust from the United States and East Asian countries. Environmental Science and Technology, 47(9), pp.4752-4759.
DOI 10.1021/es305000d

Watterson, A., (2017). Artificial turf: contested terrains for precautionary public health with particular reference to Europe. International Journal of Environmental Research and Public Health, 14(9), pp.1050.
DOI 10.3390/ijerph14091050

Way, C., Hudson, M.D., Williams, I.D. and Langley, G.J., (2022). Evidence of underestimation in microplastic research: a meta-analysis of recovery rate studies. Science of the Total Environment, 805, p.150227.
DOI 10.1016/j.scitotenv.2021.150227

Weyrauch, S., Seiwert, B., Voll, M., Wagner, S. and Reemtsma, T., (2023). Accelerated aging of tire and road wear particles by elevated temperature, artificial sunlight and mechanical stress—A laboratory study on particle properties, extractables and leachables. Science of the Total Environment, 904, p.166679.
DOI 10.1016/j.scitotenv.2023.166679

Wightwick, A., Walters, R., Allinson, G., Reichman, S. and Menzies, N., (2010). Environmental risks of fungicides used in horticultural production systems. Fungicides, 1, pp.273-304.
DOI 10.5772/13032

Wik, A. and Dave, G., (2009). Occurrence and effects of tire wear particles in the environment – A critical review and an initial risk assessment. Environmental Pollution, 157(1), pp.1-11.
DOI 10.1016/j.envpol.2008.09.028

Yan, H., Zhang, L., Liu, L. and Wen, S., (2021). Investigation of the external conditions and material compositions affecting the formation mechanism and size distribution of tire wear particles. Atmospheric Environment, 244, p.118018.
DOI 10.1016/j.atmosenv.2020.118018

Yang, K., Jing, S., Liu, Y., Zhou, H., Liu, Y., Yan, M., Yi, X. and Liu, R., (2022). Acute toxicity of tire wear particles, leachates and toxicity identification evaluation of leachates to the marine copepod, Tigriopus japonicus. Chemosphere, 297, pp.134099.
DOI 10.1016/j.chemosphere.2022.134099

Yao, Q., Shi, J., Han, X., Tian, S., Huang, J., Li, Y. and Ning, P., (2024). Emissions of polycyclic aromatic hydrocarbons in PM2. 5 emitted from motor vehicles exhaust (PAHs-PM2. 5-MVE) under the plateau with low oxygen content. Atmospheric Environment, 321, p.120364.
DOI 10.1016/j.atmosenv.2024.120364

Zhang, H.Y., Huang, Z., Liu, Y.H., Hu, L.X., He, L.Y., Liu, Y.S., Zhao, J.L. and Ying, G.G., (2023). Occurrence and risks of 23 tire additives and their transformation products in an urban water system. Environment International, 171, p.107715.
DOI 10.1016/j.envint.2022.107715

Zhang, J., Zhang, X., Wu, L., Wang, T., Zhao, J., Zhang, Y., Men, Z. and Mao, H., (2018). Occurrence of benzothiazole and its derivates in tire wear, road dust, and roadside soil. Chemosphere, 201, pp.310-317.
DOI 10.1016/j.chemosphere.2018.03.007

Zhao, H.N., Hu, X., Tian, Z., Gonzalez, M., Rideout, C.A., Peter, K.T., Dodd, M.C. and Kolodziej, E.P., (2023). Transformation Products of Tire Rubber Antioxidant 6PPD in Heterogeneous Gas-Phase Ozonation: Identification and Environmental Occurrence. Environmental Science & Technology, 57(14), pp.5621-5632.
DOI 10.1021/acs.est.2c08690

Zhou, Y., Yixi, L., Kong, Q., Peng, J., Pan, Y., Qiu, J. and Yang, X., (2023). Sunlight-induced transformation of tire rubber antioxidant N-(1, 3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD) to 6PPD-quinone in water. Environmental Science & Technology Letters, 10(9), pp.798-803.
DOI 10.1021/acs.estlett.3c00499