an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU


  • Fabian Gievers - Faculty of Resource Management, HAWK, Germany - Chair of Waste and Resource Management, Universität Rostock, Germany
  • Achim Loewen - Faculty of Resource Management, HAWK, Germany
  • Michael Nelles - Chair of Waste and Resource Management, University of Rostock, Germany - DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH, Germany


Released under CC BY-NC-ND

Copyright: © 2020 CISA Publisher


The pyrolysis of sewage sludge is an alternative method to recycle the contained nutrients, such as phosphorus, by material use of the resulting biochar. However, the ecological effects of pyrolysis are not easy to evaluate. Therefore, a life cycle assessment (LCA) was carried out to determine the environmental impact of sewage sludge pyrolysis and to compare it with the common method of sewage sludge incineration. In order to identify the most sustainable applications of the resulting biochar, four different scenarios were analyzed. The modeled life cycles include dewatering, drying and pyrolysis of digested sewage sludge and utilization paths of the by-products as well as various applications of the produced biochar and associated transports. The life cycle impact assessment was carried out using the ReCiPe midpoint method. The best scenario in terms of global warming potential (GWP) was the use of biochar in horticulture with net emissions of 2 g CO2 eq./kg sewage sludge. This scenario of biochar utilization can achieve savings of 78% of CO2 eq. emissions compared to the benchmark process of sewage sludge mono-incineration. In addition, no ecological hotspots in critical categories such as eutrophication or ecotoxicity were identified for the material use of biochar compared to the benchmark. Pyrolysis of digested sewage sludge with appropriate biochar utilization can therefore be an environmentally friendly option for both sequestering carbon and closing the nutrient cycle.


Editorial History

  • Received: 13 Dec 2020
  • Revised: 26 May 2021
  • Accepted: 14 Jun 2021
  • Available online: 11 Sep 2021


Agrafioti, E., Bouras, G., Kalderis, D. & Diamadopoulos, E. (2013). Biochar production by sewage sludge pyrolysis. Journal of Analytical and Applied Pyrolysis, 101, 72–78.
DOI 10.1016/j.jaap.2013.02.010

Alhashimi, H. A. & Aktas, C. B. (2017). Life cycle environmental and economic performance of biochar compared with activated carbon: A meta-analysis. Resources, Conservation and Recycling, 118, 13–26.
DOI 10.1016/j.resconrec.2016.11.016

DOI 10.31025/2611-4135/2020.13944

Barry, D., Barbiero, C., Briens, C. & Berruti, F. (2019). Pyrolysis as an economical and ecological treatment option for municipal sewage sludge. Biomass and Bioenergy, 122, 472–480.
DOI 10.1016/j.biombioe.2019.01.041

Breulmann, M., van Afferden, M., Müller, R. A., Schulz, E. & Fühner, C. (2017). Process conditions of pyrolysis and hydrothermal carbonization affect the potential of sewage sludge for soil carbon sequestration and amelioration. Journal of Analytical and Applied Pyrolysis, 124, 256–265.
DOI 10.1016/j.jaap.2017.01.026

Bridle, T. R. & Pritchard, D. (2004). Energy and nutrient recovery from sewage sludge via pyrolysis. Water Science and Technology, 50(9), 169–175.
DOI 10.2166/wst.2004.0562

Cao, Y. & Pawłowski, A. (2012). Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis: Brief overview and energy efficiency assessment. Renewable and Sustainable Energy Reviews, 16(3), 1657–1665.
DOI 10.1016/j.rser.2011.12.014

Cao, Y. & Pawłowski, A. (2013). Life cycle assessment of two emerging sewage sludge-to-energy systems: evaluating energy and greenhouse gas emissions implications. Bioresource Technology, 127, 81–91.
DOI 10.1016/j.biortech.2012.09.135

Christodoulou, A. & Stamatelatou, K. (2016). Overview of legislation on sewage sludge management in developed countries worldwide. Water science and technology: a journal of the International Association on Water Pollution Research, 73(3), 453–462.
DOI 10.2166/wst.2015.521

Cordell, D. & White, S. (2011). Peak Phosphorus: Clarifying the Key Issues of a Vigorous Debate about Long-Term Phosphorus Security. Sustainability, 3(12), 2027–2049.
DOI 10.3390/su3102027

Denkert, R., Kopp, J., Meyer, H., Wolf, S., Ewert, W., Lou, U., Melsa, A., Roediger, M. & Sievers, M. (2013). Merkblatt DWA-M 366: Maschinelle Schlammentwässerung (2013. Aufl.). DWA-Merkblatt: M 366. Deutsche Vereinigung für Wasserwirtschaft Abwasser und Abfall

Deutsches Institut für Normung. (2009). Umweltmanagement - Ökobilanz - Grundsätze und Rahmenbedingungen: (ISO 14040:2006); deutsche und englische Fassung EN ISO 14040:2009 (Deutsche Norm DIN EN ISO 14040). Berlin

Egle, L., Rechberger, H., Krampe, J. & Zessner, M. (2016). Phosphorus recovery from municipal wastewater: An integrated comparative technological, environmental and economic assessment of P recovery technologies. The Science of the total environment, 571, 522–542.
DOI 10.1016/j.scitotenv.2016.07.019

ELIQUO. (2020). EloDry® sewage sludge drying technology. Retrieved from

Elser, J. & Bennett, E. (2011). Phosphorus cycle: A broken biogeochemical cycle. Nature, 478(7367), 29–31.
DOI 10.1038/478029a

Ennis, C. J., Evans, A. G., Islam, M., Ralebitso-Senior, T. K. & Senior, E. (2012). Biochar: Carbon Sequestration, Land Remediation, and Impacts on Soil Microbiology. Critical Reviews in Environmental Science and Technology, 42(22), 2311–2364.
DOI 10.1080/10643389.2011.574115

Frišták, V., Pipíška, M. & Soja, G. (2018). Pyrolysis treatment of sewage sludge: A promising way to produce phosphorus fertilizer. Journal of Cleaner Production, 172, 1772–1778.
DOI 10.1016/j.jclepro.2017.12.015

Gievers, F., Loewen, A. & Nelles, M. (2019). Hydrothermal Carbonization (HTC) of Sewage Sludge: GHG Emissions of Various Hydrochar Applications. In: L. Schebek, C. Herrmann, F. Cerdas (eds), Sustainable Production, Life Cycle Engineering and Management. Progress in Life Cycle Assessment (Bd. 142, P. 59–68). Springer International Publishing.
DOI 10.1007/978-3-319-92237-9_7

Glaser, B. & Lehr, V.-I. (2019). Biochar effects on phosphorus availability in agricultural soils: A meta-analysis. Scientific reports, 9(1), 9338.
DOI 10.1038/s41598-019-45693-z

Gourdet, C., Girault, R., Berthault, S., Richard, M., Tosoni, J. & Pradel, M. (2017). In quest of environmental hotspots of sewage sludge treatment combining anaerobic digestion and mechanical dewatering: A life cycle assessment approach. Journal of Cleaner Production, 143, 1123–1136.
DOI 10.1016/j.jclepro.2016.12.007

Haupt, M. & Hellweg, S. (2019). Measuring the environmental sustainability of a circular economy. Environmental and Sustainability Indicators, 1-2, 100005.
DOI 10.1016/j.indic.2019.100005

Huijbregts, M. A. J., Steinmann, Z. J. N., Elshout, P. M. F., Stam, G., Verones, F., Vieira, M., Zijp, M., Hollander, A. & van Zelm, R. (2017). ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. The International Journal of Life Cycle Assessment, 22(2), 138–147.
DOI 10.1007/s11367-016-1246-y

Jacobs, U., Fehr, G., Geyer J., Heindl, A., Husmann, M., Kellermann, H.-G., Lehrmann, F., Ritterbusch, S., Schönfeld, R., Tomalla, M., Beatt, B., Hanßen, H., Haselwimmer, T., Hochsgürtel, H., Hüppe, P., Jasper, M., Kappa, S., Kristkeitz, R., Ludwig, P., Maurer, M.; Pietsch, B.; Schmittel, P.; Six, J.; Stamer, F., Werther, J. (2019). Merkblatt DWA-M 379 Klärschlammtrocknung (Entwurf) (2019. Aufl.). DWA-Regelwerk: Bd. 379. Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall

Leinweber, P., Bathmann, U., Buczko, U., Douhaire, C., Eichler-Löbermann, B., Frossard, E., Ekardt, F., Jarvie, H., Krämer, I., Kabbe, C., Lennartz, B., Mellander, P.-E., Nausch, G., Ohtake, H. & Tränckner, J. (2018). Handling the phosphorus paradox in agriculture and natural ecosystems: Scarcity, necessity, and burden of P. Ambio, 47(Suppl 1), 3–19.
DOI 10.1007/s13280-017-0968-9

Li, H. & Feng, K. (2018). Life cycle assessment of the environmental impacts and energy efficiency of an integration of sludge anaerobic digestion and pyrolysis. Journal of Cleaner Production, 195, 476–485.
DOI 10.1016/j.jclepro.2018.05.259

Marazza, D., Macrelli, S., D’Angeli, M., Righi, S., Hornung, A. & Contin, A. (2019). Greenhouse gas savings and energy balance of sewage sludge treated through an enhanced intermediate pyrolysis screw reactor combined with a reforming process. Waste management, 91, 42–53.
DOI 10.1016/j.wasman.2019.04.054

Mayer, B. K., Baker, L. A., Boyer, T. H., Drechsel, P., Gifford, M., Hanjra, M. A., Parameswaran, P., Stoltzfus, J., Westerhoff, P. & Rittmann, B. E. (2016). Total Value of Phosphorus Recovery. Environmental science & technology, 50(13), 6606–6620.
DOI 10.1021/acs.est.6b01239

Méndez, A., Terradillos, M. & Gascó, G. (2013). Physicochemical and agronomic properties of biochar from sewage sludge pyrolysed at different temperatures. Journal of Analytical and Applied Pyrolysis, 102, 124–130.
DOI 10.1016/j.jaap.2013.03.006

Miller-Robbie, L., Ulrich, B. A., Ramey, D. F., Spencer, K. S., Herzog, S. P., Cath, T. Y., Stokes, J. R. & Higgins, C. P. (2015). Life cycle energy and greenhouse gas assessment of the co-production of biosolids and biochar for land application. Journal of Cleaner Production, 91, 118–127.
DOI 10.1016/j.jclepro.2014.12.050

Mills, N., Pearce, P., Farrow, J., Thorpe, R. B. & Kirkby, N. F. (2014). Environmental & economic life cycle assessment of current & future sewage sludge to energy technologies. Waste management, 34(1), 185–195.
DOI 10.1016/j.wasman.2013.08.024

Paneque, M., Knicker, H., Kern, J. & La Rosa, J. M. de (2019). Hydrothermal Carbonization and Pyrolysis of Sewage Sludge: Effects on Lolium perenne Germination and Growth. Agronomy, 9(7), 363.
DOI 10.3390/agronomy9070363

Paneque, M., La Rosa, J. M. de, Kern, J., Reza, M. T. & Knicker, H. (2017). Hydrothermal carbonization and pyrolysis of sewage sludges: What happen to carbon and nitrogen? Journal of Analytical and Applied Pyrolysis, 128, 314–323.
DOI 10.1016/j.jaap.2017.09.019

Paz-Ferreiro, J., Nieto, A., Méndez, A., Askeland, M. P. J. & Gascó, G. (2018). Biochar from Biosolids Pyrolysis: A Review. International journal of environmental research and public health, 15(5).
DOI 10.3390/ijerph15050956

Peccia, J. & Westerhoff, P. (2015). We Should Expect More out of Our Sewage Sludge. Environmental science & technology, 49(14), 8271–8276.
DOI 10.1021/acs.est.5b01931

PYREG. (2020). sewage sludge. Retrieved from

Salman, C. A., Schwede, S., Thorin, E., Li, H. & Yan, J. (2019). Identification of thermochemical pathways for the energy and nutrient recovery from digested sludge in wastewater treatment plants. Energy Procedia, 158, 1317–1322.
DOI 10.1016/j.egypro.2019.01.325

Samolada, M. C. & Zabaniotou, A. A. (2014). Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece. Waste management (New York, N.Y.), 34(2), 411–420.
DOI 10.1016/j.wasman.2013.11.003

Santín, C., Doerr, S. H., Merino, A., Bucheli, T. D., Bryant, R., Ascough, P., Gao, X. & Masiello, C. A. (2017). Carbon sequestration potential and physicochemical properties differ between wildfire charcoals and slow-pyrolysis biochars. Scientific reports, 7(1), 11233.
DOI 10.1038/s41598-017-10455-2

Schmidt, H.-P., Anca-Couce, A., Hagemann, N., Werner, C., Gerten, D., Lucht, W. & Kammann, C. (2018). Pyrogenic carbon capture and storage. GCB Bioenergy, 38(1), 215.
DOI 10.1111/gcbb.12553

Schoumans, O. F., Bouraoui, F., Kabbe, C., Oenema, O. & van Dijk, K. C. (2015). Phosphorus management in Europe in a changing world. Ambio, 44 Suppl 2, 92.
DOI 10.1007/s13280-014-0613-9

Skinner, S. J., Studer, L. J., Dixon, D. R., Hillis, P., Rees, C. A., Wall, R. C., Cavalida, R. G., Usher, S. P., Stickland, A. D. & Scales, P. J. (2015). Quantification of wastewater sludge dewatering. Water research, 82, 2–13.
DOI 10.1016/j.watres.2015.04.045

Song, X. D., Xue, X. Y., Chen, D. Z., He, P. J. & Dai, X. H. (2014). Application of biochar from sewage sludge to plant cultivation: Influence of pyrolysis temperature and biochar-to-soil ratio on yield and heavy metal accumulation. Chemosphere, 109, 213–220.
DOI 10.1016/j.chemosphere.2014.01.070

Teoh, S. K. & Li, L. Y. (2020). Feasibility of alternative sewage sludge treatment methods from a lifecycle assessment (LCA) perspective. Journal of Cleaner Production, 247, 119495.
DOI 10.1016/j.jclepro.2019.119495

Tomasi Morgano, M., Leibold, H., Richter, F., Stapf, D. & Seifert, H. (2018). Screw pyrolysis technology for sewage sludge treatment. Waste management (New York, N.Y.), 73, 487–495.
DOI 10.1016/j.wasman.2017.05.049

Twardowska, I., Schramm, K.-W. & Berg, K. (2004). Sewage sludge. In I. Twardowska (Hg.), Waste Management Series. Solid Waste: Assessment, Monitoring and Remediation (Bd. 4, S. 239–295). Elsevier.
DOI 10.1016/S0713-2743(04)80013-8

van Wesenbeeck, S., Prins, W., Ronsse, F. & Antal, M. J. (2014). Sewage Sludge Carbonization for Biochar Applications. Fate of Heavy Metals. Energy & Fuels, 28(8), 5318–5326.
DOI 10.1021/ef500875c

Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E. & Weidema, B. (2016). The ecoinvent database version 3 (part I): Overview and methodology. The International Journal of Life Cycle Assessment, 21(9), 1218–1230.
DOI 10.1007/s11367-016-1087-8

Yoshida, H., Christensen, T. H. & Scheutz, C. (2013). Life cycle assessment of sewage sludge management: a review. Waste management & research: the journal of the International Solid Wastes and Public Cleansing Association, ISWA, 31(11), 1083–1101.
DOI 10.1177/0734242X13504446

Yue, X., Arena, U., Chen, D., Lei, K. & Dai, X. (2019). Anaerobic digestion disposal of sewage sludge pyrolysis liquid in cow dung matrix and the enhancing effect of sewage sludge char. Journal of Cleaner Production, 235, 801–811.
DOI 10.1016/j.jclepro.2019.07.033

Zielińska, A. & Oleszczuk, P. (2016). Effect of pyrolysis temperatures on freely dissolved polycyclic aromatic hydrocarbon (PAH) concentrations in sewage sludge-derived biochars. Chemosphere, 153, 68–74.
DOI 10.1016/j.chemosphere.2016.02.118