an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU

KINETIC PARAMETERS OF TORREFACTION PROCESS OF ALTERNATIVE FUEL PRODUCED FROM MUNICIPAL SOLID WASTE AND CHARACTERISTIC OF CARBONIZED REFUSE DERIVED FUEL

  • Paweł Stępień - Wrocław University of Environmental and Life Sciences, Faculty of Life Sciences and Technology, Institute of Agricultural Engineering, Poland
  • Andrzej Białowiec - Ekopartner-Recykling sp. z o.o., Poland

DOI 10.31025/2611-4135/2018.13702

Released under CC BY-NC-ND

Copyright: © 2018 CISA Publisher

Editorial History

  • Received: 17 Jan 2018
  • Revised: 17 Jun 2018
  • Accepted: 31 Aug 2018
  • Available online: 14 Sep 2018

Abstract

Torrefaction is next to drying, pelletizing and briquetting one of the methods for pre-treatment of fuels for later use for energy purposes. Torrefaction is a thermo-chemical process, carried out in the temperature range from 200 to 300°C, under atmospheric pressure and inert gas environment. The study involved a refuse derived fuel (RDF) produced from municipal solid waste in a mechanical-biological plant. The aim of this work was to determine the kinetic parameters of the torrefaction process of RDF and to examine the effect of temperature and the residence time on fuel properties of biochar. Torrefaction process was carried out in the temperature range from 200 to 300°C with the temperature interval of 20°C. The residence was respectively 20, 40 and 60 minutes for each temperature. RDF and the resulting carbonized refuse derived fuel (CRDF) have been subjected to the following analysis: moisture content, organic matter, combustible and volatile content, ash content, and higher heating value. The determined activation energy of RDF torrefaction was 3.71 kJ·mol-1. The thermogravimetric analysis indicated that during torrefaction, mostly lingo-cellulosic, and hemi-cellulosic biomass present in RDF decomposes during torrefaction. Studies have shown the influence of residence time and temperature on fuel properties of the obtained CRDF. The highest heating value of the CRDF was obtained for the temperature of 260oC, and residence time 20 minutes.


Keywords


References

Ahn S. Y., Eom S. Y., Rhie Y. H., Sung Y. M., Moon Ch. E. (2013). Application of refuse fuels in a direct carbon fuel cell system. Energy, vol. 51, 447-456.
DOI 10.1016/j.energy.2012.12.025

Akdag A. S., Atimtay A., Sanin, F. D. (2016). Comparison of fuel value and combustion characteristics of two different RDF samples. Waste manage, vol. 47, 217-224.
DOI 10.1016/j.wasman.2015.08.037

Bates R. B., Ghoniem A. F. (2012). Biomass torrefaction: Modeling of reaction thermochemistry. Bioresource technol, vol. 124, 460-469. DOI: 10.1016/j.biortech.2013.01.158.

Bergman P. C. A., Boersma A. R., Kiel J. H. A. (2004). Torrefaction for entrained-flow gasification of biomass. The 2nd World Conference and Technology Exhibition on Biomass for Energy, Industry and Climate Protection, Roma, Italy 10-14.05.2004

Bergman P. C. A., Boersma A. R., Zwart R. W. R., Kiel J. H. A. (2005). Torrefaction of biomass exsiting coal-fired power stations. ECN publication ECN-C-05-013.

Białowiec A., Pulka J., Stępień P., Manczarski P., Gołaszewski J. (2017). The RDF/SRF torrefaction: An effect of temperature on characterization of the product – Carbonized Refuse Derived Fuel. Wastee manage, vol. 70, 91-100.
DOI 10.1016/j.wasman.2017.09.020

Carrier M., Loppinet-Serani A., Denux D., Lasnier J.-M., Ham-Pichavant F., Cansell F., Aymonier C. (2011). Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass bioenergy, vol. 35, 298–307.

Çepolioğullar Ö., Haykiri-Açma H., Yaman S. (2016). Kinetic modeling of RDF pyrolysis: Model-fitting and model-free approaches. Waste manage, vol. 48, 275-284.
DOI 10.1016/j.wasman.2015.11.027

Dalai A. K., Batta N., Eswaramoorthi I., Schoenau G. J. (2009) Gasification of refuse derived fuel in a fixed bed reactor for syngas production, Waste manage, vol. 29, 252-258.

Grammelis P., Basinas P., Malliopoulou A., Sakellaropoulos G. (2009). Pyrolysis kinetics and combustion characteristics of waste recovered fuels. Fuel, vol. 88. 195-205.
DOI 10.1016/j.fuel.2008.02.002

Hryb W., Biegańska J. (2013). Wytwarzanie paliw z odpadów dla cementowni (Production of fuels from waste to cement plant). Przegląd komunalny, wydanie specjalne, n. 4, 50-59.

Kara M. (2012). Environmental and economic advantages associated with the use of RDF in Istanbul, Turkey. Waste Manage, vol. 29, 2976-2982.

Kordylewski W., Bulewicz E., Dyjakon A., Hardy T., Słupek S., Miller R., Wanik A. 2008. Spalanie i paliwa (Combustion and fuels). OWPW, Wrocław, ISBN 83-7085-912-7.

Kinitz N. (2014). Budujemy pełną parą. Raport. Spalarnie w Polsce (Construction at full speed, Raport, Polish incineration plants). Przegląd komunalny, n. 9.

Krawczyk P., Szczygieł J. (2013). Analiza uwarunkowań stosowania paliwa alternatywnego do wytwarzania energii elektrycznej i ciepław w warunkach przedsiębiorstwa ciepłowniczego (Analysis of the conditions for usingalternativefuels to generateelectricity a

Kruger B., Mrotzek A., Wirtz S. (2014). Separation of harmful impurities from refuse derived fuels (RDF) by a fluidized bed. Waste manage, vol. 34, 390-401.
DOI 10.1016/j.wasman.2013.10.021

Lu K. M., Lee, W. J. Chen W. H. Liu S. H., Lin T. C. (2012). Torrefaction and low temperature carbonization of oil pal fibre and eucalyptus in nitrogen and air atmospheres. Bioresource technol, vol. 123, 98-105.
DOI 10.1016/j.biortech.2012.07.096

Madanayake B. N., Gan S., Eastwick C., Ng H. K. (2016). Thermochemical and structural changes in Jatropha curcas seed cake during torrefaction for its use as coal co-firing feedstock. Energy, vol. 100, 262-272.
DOI 10.1016/j.energy.2016.01.097

Malińska K. (2015). Prawne i jakościowe aspekty dotyczące wymagań dla biowęgla (Legal and qualitative aspects of biocarbon requirements). Inżynieria i Ochrona Środowiska, vol. 18, n. 3, 359-371.

Malinowski M., Wolny-Koładka, K. (2015). Badanie procesu samonagrzewania się paliwa alternatywnego wytworzonego ze zmieszanych odpadów komunalnych (Investigation of the self heating process of analternativefuelderived from municipal solid waste). Proceedi
DOI 10.2429/proc.2015.9(1)034

Manya J. J., Garcia-Ceballos F., Azuara M., Lotorre N., Royo C. (2015). Pyrolysis and char reactivity of poor-quality refuse-derived fuel (RDF) from municipal solid waste. Fuel process technol, vol. 140, 276-284.
DOI 10.1016/j.fuproc.2015.09.014

Miskolczi N., Borsodi N., Buyong F., Angyal A., Williams P.T. (2011). Production of pyrolytic oils by catalytic pyrolysis of Malaysia refuse-derived fuels in continuously stirred batch reactor. Fuel process technol, vol. 92, 925-932.
DOI 10.1016/j.fuproc.2010.12.012

Nobre C., Goncalves M. M., Vilarinho C. G., Mendes B. S. (2016). Removal of Chromium and Aluminium from Aqueous Solutions Using Refure Derived Char. Technological Innovation for Cyber-Physical Systems. 7th IFIP WG 5.5/SOCOLNET Advanced Doctoral Conference

Nowak M., Szul M. (2016). Possibilities for application of alternative fuels in Poland. Archives of waste management and environmental protection, vol. 18, 33-44.

Pietryszyn K., Primus A. (2015). Definition of the municipal waste in the context of the Renewable Energy Sources Act. Archives of waste management and environmental protection, vol. 17, 91-98.

PN-G-04513:1981 Standard. Solid fuels. Determination of the higher heating value and the lower heating value.

PN-G-04516:1998 Standard. Solid fuels. Determination of volatile content by means of the gravimetric method.

PN-EN 14346:2011 Standard. Waste characteristics. Calculation of dry mass on the basis of dry residue or water content.

PN-Z-15006:1993 Standard. Waste characteristics. Determination of morphological composition.

PN-Z-15008-04:1993 Standard. Municipal solid waste. Combustible and non-combustible content.

PN-EN 15169:2011 Standard. Waste characteristics. Content of organic matter.

Preston M., Kollberg P. (2016). Refused Derived Fuel (RDF) Project. European Union 8.09.2016.Robinson T., Bronson B., Gogolek P., Mehrani P. (2016). Sample preparation for thermo-gravimetric determination and thermo-gravimetric characterization of refuse
DOI 10.1016/j.wasman.2015.11.018

Sanchez-Silva L., López-González D., Villaseñor J., Sánchez P., Valverde J.L. (2012). Thermogravimetric–mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis. Bioresour technol, vol. 109, 163–172.

Seo M. W., Kim S. D., Lee S. H., Lee J. G. (2010). Pyrolysis characteristics of coal and RDF blends in non-isothermal and isothermal conditions. J anal appl pyrol, vol. 88, n. 2, 160-167.
DOI 10.1016/j.jaap.2010.03.010

Singh S., Wu Ch., Williams P. T. (2012). Pyrolysis of waste materials using TGA-MS and TGA-FTIR as complementary characterization techniques. J anal appl pyrol, vol. 94, 99-107.
DOI 10.1016/j.jaap.2011.11.011

Soria-Verdugo A., Goos E., Gorcia-Hernando N. (2015). Effect of the number of TGA curves employed on the biomass pyrolysis kinetics results obtained using the Distributed Activation Energy Model. Fuel process technol, vol. 134, 360-371.
DOI 10.1016/j.fuproc.2015.02.018

Stępień P., Pulka J., Serowik M., Białowiec A. (2017). Thermogravimetric and calorimetric characteristics of alternative fuel in terms of its use in low-temperature pyrolysis. Waste and Biomass Valorization.
DOI 10.1007/s12649-017-0169-6

Tummuluru J. S., Sokhansanj S., Wright Ch. T., Boardman R. D. (2010). Biomass torrefaction process review and moving bad torrefaction system model development. ASABE.

Tumuluru J. S., Sokhansanj S., Hess J. R., Wright Ch. T., Boardman R. D. (2011). A review on biomass torrefaction processand product properties for energy applications. Biotechnology, vol. 7, 384-401.
DOI 10.1089/ind.2011.7.384

Whyte H. E., Whyte K. L., Awad S. Tazerout M. (2015). Pyrolytic oil production by calalytin of refuse-derived fuels: Investigation of low cost calalysts. Fuel process technol, vol. 140, 32-38.
DOI 10.1016/j.fuproc.2015.08.022


oct
15
feb
23
sep
30