an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU

GASIFICATION OF BIOMASS IN A PLASMA GASIFIER

  • Vladimir Messerle - Combustion Problems Institute, Ministry of Education and Science of Kazakhstan, Kazakhstan
  • Alexandr Ustimenko - Plasmatechnics R&D LLP, Institute of Experimental and Theoretical Physics of al-Farabi Kazakh National University, Kazakhstan
  • Oleg Lavrichshev - Plasmatechnics R&D LLP, Institute of Experimental and Theoretical Physics of al-Farabi Kazakh National University, Kazakhstan
  • Nadezhda Slavinskaya - Gesellschaft für Anlagen- und Reaktorsicherheit GmbH Garching, Germany
  • Zholat Sytdykov - Plasmatechnics R&D LLP, Institute of Experimental and Theoretical Physics of al-Farabi Kazakh National University, Kazakhstan

Released under CC BY-NC-ND

Copyright: © 2019 CISA Publisher


Abstract

This paper presents the thermodynamic analysis and experimental results on the plasma gasification of biomass using the example of wood waste. Thermodynamic computations revealed that synthesis gas can be produced from wood waste for utilization in the heat-and-power engineering, metallurgy and chemical industries. The air gasification of wood waste produces a synthesis gas yield of 71.6% (CO-41.9% and H2- 29.7%). Experiments on the plasma gasification of wood waste were conducted in an experimental setup composed of a plasma gasifier with 50 kg/h nominal productivity and a DC plasmatron with 70 kW nominal power. Based on gas analysis, the exit gas of the plasma setup exhibited the following composition, vol.%: СO – 42.0, H2 – 25.1, and N2 – 32.9. The measured temperature in the bottom of the plasma gasifier was 1,560 K. The discrepancy between the experimental and calculated yield of synthesis gas was not more than 7%. Harmful impurities were not observed in the gases or the condensed products generated from the plasma gasification of wood waste.

Keywords


Editorial History

  • Received: 04 Dec 2019
  • Revised: 12 Mar 2020
  • Accepted: 17 Mar 2020
  • Available online: 24 Jul 2020

References

An'shakov, A.S., Faleev, V.A., Danilenko, A.A, Urbakh, E.K., Urbakh, A.E., 2007. Investigation of plasma gasification of carbonaceous technogeneous wastes. Thermophysics and Aeromechanics. 14(4), 607–616.
DOI 10.1134/S0869864307040105

Brattsev, A.N., Kuznetsov, V.A., Popov, V.E., Ufimtsev, A.A., 2011. Arc gasification of biomass: Example of wood residue. High Temperature. 49, 244–248.
DOI 10.1134/S0018151X11010020

Byun Youngchul, Cho Moohyun, Hwang Soon-Mo, Chung Jaewoo, 2012. Thermal Plasma Gasification of Municipal Solid Waste (MSW), Gasification for Practical Applications, Dr. Yongseung Yun (Ed.). ISBN:978-953-51-0818-4. 183–209.
DOI 10.5772/48537

CHEMical properties of wood. Chemical composition of wood. 2016. Available from http://www.drevesinas.ru/woodstructura/chemical/1.html [Accessed on 07 November 2019]. (In Russian)

Demirbaş, A., Demirbaş, A.H., 2004. Estimating the Calorific Values of Lignocellulosic Fuels. Energy Exploration & Exploitation. 22(2), 135–143.•
DOI 10.1260%2F0144598041475198

Gorokhovski, M., Karpenko, E.I., Lockwood, F.C., Messerle, V.E., Trusov, B.G., Ustimenko, A.B., 2005. Plasma Technologies for Solid Fuels: Experiment and Theory. Journal of the Energy Institute. 78(4), 157–171.
DOI 10.1179/174602205X68261

Golish, V.I., Karpenko, E.I., Luk’yashchenko, V.G., Messerle, V.E., Ustimenko, A.B., Ushanov, V.Zh., 2009. Long-Service-Life Plasma Arc Torch. High Energ Chem+. 43(4), 318–323.
DOI 10.1134/S0018143909040134

Graedel, T.E., Allenby, B.R., 2003. Industrial Ecology. Prentice Hall. ISBN 0130467138, 9780130467133: 363 p

Heberlein, J., Murphy, A.B., 2008. Topical review: Thermal plasma waste treatment. J Phys D Appl Phys. 41(5), 053001 (20 p).
DOI 10.1088/0022-3727/41/5/053001

Il’in, A.M., Messerle, V.E., Ustimenko, A.B., 2010. The Formation of Carbon Nanotubes on Copper Electrodes under the Arc Discharge Conditions. High Energ Chem+. 44(4), 326–331.
DOI 10.1134/S0018143910040120

Katsaros, G., Nguyen, T.-V., 2018. Masoud Rokni Tri-generation System based on Municipal Waste Gasification, Fuel Cell and an Absorption Chiller. Journal of Sustainable Development of Energy, Water and Environment Systems. 6(1), 13-32.
DOI 10.13044/j.sdewes.d5.0172

Lan, W., Chen, G., Zhu, X., Wang, X., Liu, Ch., Xua, B., 2018. Biomass gasification-gas turbine combustion for power generation system model based on ASPEN PLUS. Science of the Total Environment. 628–629:1278–1286.
DOI 10.1016/j.scitotenv.2018.02.159

Materazzi, M., Lettieri, P., Taylor, R.,Chapman, C., 2013. Thermodynamic modelling and evaluation of a two-stage thermal process for waste gasification. Fuel. 108, 356–369.
DOI 10.1016/j.fuel.2013.02.037

Matveev, I.B., Messerle, V.E., Ustimenko, A.B., 2008. Plasma Gasification of Coal in Different Oxidants. IEEE T Plasma Sci. 36(6), 2947–2954.
DOI 10.1109/TPS.2008.2007643

Matveev, I.B., Serbin, S.I., Washchilenko, N.V., 2016. Plasma-Assisted Treatment of Sewage Sludge. IEEE T Plasma Sci. 44(12), 2960–2964.
DOI 10.1109/TPS.2016.2604849

Messerle, V.E., Mosse, A.L., Ustimenko, A.B., 2018. Processing of biomedical waste in plasma gasifier. Waste Manag. 79, 791–799.
DOI 10.1016/j.wasman.2018.08.048

Messerle, V.E.; Ustimenko, A.B., 2007. Solid Fuel Plasma Gasification. In: Syred N. and Khalatov A. (eds.) Advanced Combustion and Aerothermal Technologies. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht, 141–156.
DOI 10.1007/978-1-4020-6515-6_12

Mourão, R., Marquesi, A.R., Gorbunov, A.V., Filho, G.P., Halinouski, A.A., Otani, C., 2015. Thermochemical Assessment of Gasification Process Efficiency of Biofuels Industry Waste with Different Plasma Oxidants. IEEE T Plasma Sci. 43(10), 3760–3767.
DOI 10.1109/TPS.2015.2416129

Porteous, A., 2005, Why energy from waste incineration is an essential component of environmentally responsible waste management. Waste Management. 25, 451–459.
DOI 10.1016/j.wasman.2005.02.008

Prins Mark, J., 2005, Thermodynamic analysis of biomass gasification and torrefaction. – Eindhoven : Technische Universiteit Eindhoven. Proefschrift. ISBN 90-386-2886-2

Surov, A.V., Popov, S.D., Popov, V.E., Subbotin, D.I., Serba, E.O., Spodobin, V.A., Nakonechny, G.V., Pavlov, A.V., 2017. Multi-gas AC plasma torches for gasification of organic substances. Fuel. 203, 1007–1014.
DOI 10.1016/j.fuel.2017.02.104

Veringa, H.J., 2005. Advanced techniques for generation of energy from biomass and waste. ECN Biomass. 24 p. Available from https://pdfs.semanticscholar.org/a3a7/5f62c333b8ddac59fc00e59fac2f3ccd0311.pdf [Accessed on 07 November 2019]

Zhang, Q., Dor, L., Fenigshtein, D., Yang, W., Blasiak, W., 2012. Gasification of Municipal Solid Waste in the Plasma Gasification Melting Process. Appl Energ. 90, 106–112.
DOI 10.1016/j.apenergy.2011.01.041

Zhovtyansky, V.A., Petrov, S.V., Lelyukh, Yu.I., Nevzglyad, I.O., Goncharuk, Yu.A., 2013. Efficiency of Renewable Organic Raw Materials Conversion Using Plasma Technology. IEEE T Plasma Sci. 41(12), 3233–3239.
DOI 10.1109/TPS.2013.2275936