an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU

EVALUATION OF THE APPLICATION OF MUNICIPAL SOLID WASTE INCINERATOR (MSWI) ASH IN CIVIL ENGINEERING USING A SUSTAINABILITY APPROACH

  • Setareh Seraj - Department of Civil and Environmental Engineering, Amirkabir University of Technology, Iran
  • Morteza Nikravan - Department of Civil and Environmental Engineering, Amirkabir University of Technology, Iran
  • Ali A. Ramezanianpour - Department of Civil and Environmental Engineering, Amirkabir University of Technology, Iran
  • Parham Zendehdel - Department of Civil and Environmental Engineering, Amirkabir University of Technology, Iran

Released under CC BY-NC-ND

Copyright: © 2020 CISA Publisher


Abstract

Incineration is regarded as one of the common methods for energy recovery as well as waste reduction, due to the high amount of waste generation in major cities; for instance Tehran (7000-8000 ton/day), and lack of sufficient landfill. The proper treatment and recycling of municipal solid waste incinerator (MSWI) residual ashes is one of the challenges which decision makers are faced with. In order to investigate the feasibility of the recycling of ashes, the sustainability index is considered. This evaluation is carried out by means of the multi-criteria decision-making approach for assessing sustainability (MIVES) and the Analytical Hierarchy Process (AHP) as a conventional decision-making tool. Six possible scenarios in Iran was determined, BA/FA landfilled with solid waste system (current scenario), Partial substitute of raw materials for cement/concrete, Ceramics and glass/glass-ceramics production, Geotechnical applications, use of BA/FA as alternative adsorbent and Fertilizers in agricultural soils. The assessment was accomplished through 25 questionnaires distributed among experts which includes environmentalists, governmental decision makers, academics, and technical groups. The questionnaires comprised of 33 pairwise comparison matrices, and the experts were asked to systematically compare elements of the constructed hierarchy in numerical terms. According to the results, reusing MSWI ash as a partial substitute for raw materials in cement/concrete scored highest in ranking among other potential MSWM scenarios (with a relative weight of 0.234). The results also reveal that the utilization of BA/FA as alternative adsorbents and as fertilizers in agricultural soils are not to be currently pursued in Iran (with relative weights of 0.117 and 0.129 respectively).

Keywords


Editorial History

  • Received: 02 Mar 2018
  • Revised: 15 Sep 2019
  • Accepted: 25 Oct 2019
  • Available online: 23 Mar 2020

References

Aguado de Cea, A., Gálvez, J.C. and Fernández-Ordoñez, D. (2016). Sustainability evaluation of the concrete structures. http://www.iccs16.org/frontal/doc/Ebook_ICCS16.pdf

Aguado de Cea, A., Gálvez, J. C., & Fernández-Ordoñez, D. (2016). Sustainability evaluation of the concrete structures. In ICCS16 Concrete Sustainability: Proceedings of the Second International Conference on Concrete Sustainability, held in Madrid, Spain on 13-15 June 2016 (pp. 58-71). Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE)

Al-Harbi, K. M. A. S. (2001). Application of the AHP in project management. International Journal of Project Management, 19(1), 19–27.
DOI 10.1016/S0263-7863(99)00038-1

Allegrini, E., Vadenbo, C., Boldrin, A., & Fruergaard, T. (2015). Life cycle assessment of resource recovery from municipal solid waste incineration bottom ash. Journal of Environmental Management, 151, 132–143.
DOI 10.1016/j.jenvman.2014.11.032

Barros, M.C. (n.d.). Integrated pollution prevention and control for heavy ceramic industry in Galicia (NW Spain)

Barros, J.J.C., Coira, M. L., De la Cruz López, M. P., & del Caño Gochi, A. (2015). Assessing the global sustainability of different electricity generation systems. Energy, 89, 473-489

Blanco, A., de la Fuente, A., & Aguado, A. (n.d.). Sustainability analysis of steel fibre reinforces concrete slabs, 850–861

Brauers, W. K. (2004). OPTIMIZATION METHODS FOR (Vol. 342). Kluwer Academic Publishers, Boston/Dordrecht/London

Chang, K. L. (2015). A hybrid program projects selection model for nonprofit TV stations. Mathematical Problems in Engineering, 2015

Chandler, A. J., Eighmy, T. T., Hjelmar, O., Kosson, D. S., Sawell, S. E., Vehlow, J., ... & Hartlén, J. (1997). Municipal solid waste incinerator residues (Vol. 67). Elsevier

Chen, X., Pang, J., Zhang, Z., & Li, H. (2014). Sustainability assessment of solid waste management in China: A decoupling and decomposition analysis. Sustainability, 6(12), 9268-9281

Chen, Y. C., Lien, H. P., & Tzeng, G. H. (2010). Measures and evaluation for environment watershed plans using a novel hybrid MCDM model. Expert systems with applications, 37(2), 926-938

Chithambaranathan, P., Subramanian, N., Gunasekaran, A., & Palaniappan, P. K. (2015). Service supply chain environmental performance evaluation using grey based hybrid MCDM approach. International Journal of Production Economics, 166, 163-176

Colangelo, F., Cioffi, R., Montagnaro, F., & Santoro, L. (2012). Soluble salt removal from MSWI fly ash and its stabilization for safer disposal and recovery as road basement material. Waste management, 32(6), 1179-1185

Dong, J., Chi, Y., Zou, D., Fu, C., Huang, Q., & Ni, M. (2014). Energy–environment–economy assessment of waste management systems from a life cycle perspective: Model development and case study. Applied Energy, 114, 400-408

Ferreira, C., Ribeiro, A., & Ottosen, L. (2003). Possible applications for municipal solid waste fly ash. Journal of Hazardous Materials, 96(2–3), 201–216.
DOI 10.1016/S0304-3894(02)00201-7

Forteza, R., Far, M., Segu, C., & Cerda, V. (2004). Characterization of bottom ash in municipal solid waste incinerators for its use in road base. Waste Management, 24(9), 899–909.
DOI 10.1016/j.wasman.2004.07.004

de la Fuente, A., Pons, O., Josa, A., & Aguado, A. (2016). Multi-Criteria Decision Making in the sustainability assessment of sewerage pipe systems. Journal of Cleaner Production, 112, 4762-4770

de la Fuente, A., Armengou, J., Pons, O., & Aguado, A. (2017). Multi-criteria decision-making model for assessing the sustainability index of wind-turbine support systems: application to a new precast concrete alternative. Journal of Civil Engineering and Management, 23(2), 194-203

de la Fuente, A., Blanco, A., Cavalaro, S., & Aguado, A. (n.d.). Sustainability assessment of precast concrete segments for TBM tunnels

Garcia-Lodeiro, I., Carcelen-Taboada, V., Fernández-Jiménez, A., & Palomo, A. (2016). Manufacture of hybrid cements with fly ash and bottom ash from a municipal solid waste incinerator. Construction and Building Materials, 105, 218–226.
DOI 10.1016/j.conbuildmat.2015.12.079

Ginés, O., Chimenos, J. M., Vizcarro, A., Formosa, J., & Rosell, J. R. (2009). Combined use of MSWI bottom ash and fly ash as aggregate in concrete formulation : Environmental and mechanical considerations, 169, 643–650.
DOI 10.1016/j.jhazmat.2009.03.141

Hacer Ak, W. B. (n.d.). Sustainable municipal solid waste management decision making. Management of Environmental Quality: An International Journal, Vol. 26 Issue: 6, pp.909-928,
DOI 10.1108/ MEQ-03-2015-0028

Henrik Ørnebjerg ; Jörn, F. (2006). “Management of Bottom Ash from WTE Plants.” Working Group on Thermal Treatment of Waste, The International Solid Waste Association (ISWA)

Hoornweg, D., & Bhada-tata, P. (2012). What a waste: A global review of solid waste management. Urban Development Series Knowledge Papers.
DOI 10.1111/febs.13058

Hosseini, S. M. A., Pons, O., & De, A. (2018). A combination of the Knapsack algorithm and MIVES for choosing optimal temporary housing site locations: A case study in Tehran. International Journal of Disaster Risk Reduction, 27(October 2017), 265–277.
DOI 10.1016/j.ijdrr.2017.10.013

http://stats.oecd.org/. (n.d.)

Huang, T. Y., Chiueh, P. T., & Lo, S. L. (2015). Life-cycle environmental and cost impacts of reusing fly ash. Resources, Conservation and Recycling.
DOI 10.1016/j.resconrec.2016.07.001

Ilangkumaran, M., Karthikeyan, M., Ramachandran, T., Boopathiraja, M., & Kirubakaran, B. (2015). Risk analysis and warning rate of hot environment for foundry industry using hybrid MCDM technique. Safety science, 72, 133-143

Ishizaka, A., & Labib, A. (2009). Analytic hierarchy process and expert choice: Benefits and limitations. Or Insight, 22(4), 201-220

Khajuria, A., Yamamoto, Y., & Morioka, T. (2010). Estimation of municipal solid waste generation and landfill area in Asian developing countries

Lam, C. H., Ip, A. W., Barford, J. P., & McKay, G. (2010). Use of incineration MSW ash: a review. Sustainability, 2(7), 1943-1968

Li, Y., Hao, L., & Chen, X. (2016). Analysis of MSWI bottom ash reused as alternative material for cement production. Procedia Environmental Sciences, 31, 549–553.
DOI 10.1016/j.proenv.2016.02.084

Liou, J. J., & Tzeng, G. H. (2012). Comments on “Multiple criteria decision making (MCDM) methods in economics: an overview”. Technological and Economic Development of Economy, 18(4), 672-695

Lombera, J. T. S. J., & Rojo, J. C. (2010). Industrial building design stage based on a system approach to their environmental sustainability. Construction and Building Materials, 24(4), 438-447

Management of Bottom Ash from WTE Plant. 2006, Working Group on Thermal Treatment of Waste, The International Solid Waste Association (ISWA)

Margallo, M. (2015). Environmental sustainability assessment of the management of municipal solid waste incineration residues: A review of the current situation. Clean Technologies and Environmental Policy, 17(5).
DOI 10.1007/s10098-015-0961-6

Margallo, M., Aldaco, R., Irabien, A., Varbanov, P., Klemes, J. J., Seferlis, P., … Pierucci, S. (2013). Life Cycle Assessment of Bottom Ash Management from a Municipal Solid Waste Incinerator (MSWI). 16th International Conference on Process Integration, Modelling and Optimisation For Energy Saving and Pollution Reduction (Pres’13), 35, 871–876.
DOI 10.3303/CET1335145

Margallo, M., Massoli Taddei, M.B., Hernández-Pellón, A., Aldaco R. & Irabien Á. (2015). Environmental sustainability assessment of the management of municipal solid waste incineration residues : a review of the current situation, 1333–1353.
DOI 10.1007/s10098-015-0961-6

Marković, D., Janošević, D., Jovanović, M. L., & Nikolić, V. (2010). Application method for optimization in solid waste management system in the city of Niš. Facta universitatis-series: Mechanical Engineering, 8(1), 63-76

Moeinaddini, M., Khorasani, N., Danehkar, A., & Darvishsefat, A. A. (2010). Siting MSW landfill using weighted linear combination and analytical hierarchy process (AHP) methodology in GIS environment (case study: Karaj). Waste management, 30(5), 912-920

Nabavi-Pelesaraei, A., Bayat, R., Hosseinzadeh-Bandbafha, H., Afrasyabi, H., & Berrada, A. (2017). Prognostication of energy use and environmental impacts for recycle system of municipal solid waste management. Journal of Cleaner Production, 154, 602-613

Oehmig, W. N., Roessler, J. G., Blaisi, N. I., & Townsend, T. G. (2015). ScienceDirect Contemporary practices and findings essential to the development of effective MSWI ash reuse policy in the United States. Environmental Science and Policy, 51, 304–312.
DOI 10.1016/j.envsci.2015.04.024

Pardo-Bosch, F., & Aguado, A. (2016). Sustainability as the key to prioritize investments in public infrastructures. Environmental Impact Assessment Review, 60, 40-51

Pérez, J. (1995). Some Comments on Saaty’s AHP. Management Science, 41(6), 1091–1095.
DOI 10.1287/mnsc.41.6.1091

Piñero, I., San-José, J. T., Rodríguez, P., & Losáñez, M. M. (2017). Multi-criteria decision-making for grading the rehabilitation of heritage sites. Application in the historic center of La Habana. Journal of Cultural Heritage, 26, 144-152

Pires, A., Martinho, G., & Chang, N. B. (2011). Solid waste management in European countries: A review of systems analysis techniques. Journal of environmental management, 92(4), 1033-1050

Pons, O., & Aguado, A. (2012). Integrated value model for sustainable assessment applied to technologies used to build schools in Catalonia, Spain. Building and Environment, 53, 49-58

Pons, O., de la Fuente, A., & Aguado, A. (2016). The use of MIVES as a sustainability assessment MCDM method for architecture and civil engineering applications. Sustainability, 8(5), 460

Poulikakos, L. D., Papadaskalopoulou, C., Hofko, B., Gsch??sser, F., Cannone Falchetto, A., Bueno, M., … Partl, M. N. (2017). Harvesting the unexplored potential of European waste materials for road construction. Resources, Conservation and Recycling.
DOI 10.1016/j.resconrec.2016.09.008

Pujadas, P., Pardo-Bosch, F., Aguado-Renter, A., & Aguado, A. (2017). MIVES multi-criteria approach for the evaluation, prioritization, and selection of public investment projects. A case study in the city of Barcelona. Land Use Policy, 64, 29-37

Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences.
DOI 10.1504/IJSSCI.2008.017590

Schübeler, P., Christen, J., & Wehrle, K. (1996). Conceptual framework for municipal solid waste management in low-income countries (Vol. 9). St. Gallen: SKAT (Swiss Center for Development Cooperation)

Sabbas, T., Polettini, A., Pomi, R., Astrup, T., Hjelmar, O., Mostbauer, P., ... & Heuss-Assbichler, S. (2003). Management of municipal solid waste incineration residues. Waste management, 23(1), 61-88

Silva, A., Rosano, M., Stocker, L., & Gorissen, L. (2016). From waste to sustainable materials management: Three case studies of the transition journey. Waste Management, 1–11.
DOI 10.1016/j.wasman.2016.11.038

Sormunen, L. A. (2016). Combining Mineral Fractions of Recovered MSWI Bottom Ash: Improvement for Utilization in Civil Engineering Structures.
DOI 10.1007/s12649-016-9656-4

Sou, W., Chu, A., & Chiueh, P. (2016). Sustainability assessment and prioritisation of bottom ash management in Macao. Waste Management & Research, 34(12), 1275–1282.
DOI 10.1177/0734242X16665914

Sun, X., Li, J., Zhao, X., Zhu, B., & Zhang, G. (2016). A Review on the Management of Municipal Solid Waste Fly Ash in American. Procedia Environmental Sciences, 31, 535–540.
DOI 10.1016/j.proenv.2016.02.079

Talyan, V., Dahiya, R. P., & Sreekrishnan, T. R. (2008). State of municipal solid waste management in Delhi, the capital of India. Waste Management, 28(7), 1276-1287

Tasneem, K. (2014). B. U. of M. S. W. I. A. as S. R. C. M. (2014). Beneficial Utilization of Municipal Solid Waste Incineration Ashes

Tavana, M., Momeni, E., Rezaeiniya, N., Mirhedayatian, S. M., & Rezaeiniya, H. (2013). A novel hybrid social media platform selection model using fuzzy ANP and COPRAS-G. Expert Systems with Applications, 40(14), 5694-5702

Travar, I., Lidelöw, S., Andreas, L., Tham, G., & Lagerkvist, A. (2009). Assessing the environmental impact of ashes used in a landfill cover construction. Waste Management, 29(4), 1336–1346.
DOI 10.1016/j.wasman.2008.09.009

U.S. EPA. (2016). Assessing Trends in Material Generation, Recycling, Composting, Combustion with Energy Recovery and Landfilling in the United States

Vehlow, J. (2012). Waste-to-energy ash management in Europe. In Encyclopedia of Sustainability Science and Technology (pp. 11720-11736). Springer, New York, NY

Wang, S., & Wu, H. (2006). Environmental-benign utilisation of fly ash as low-cost adsorbents. Journal of Hazardous Materials.
DOI 10.1016/j.jhazmat.2006.01.067

Wiles, C., & Shepherd, P. B. (1999). Beneficial use and recycling of municipal waste combustion residues : a comprehensive resource document

Yin, L. J., Wang, C., Hu, Y. Y., Chen, D. Z., Xu, J. F., & Liu, J. (2017). AHP-based approach for optimization of waste disposal method in urban functional zone. Environmental technology, 38(13-14), 1689-1695

Zavadskas, E. K., Antucheviciene, J., Turskis, Z., & Adeli, H. (2016). Hybrid multiple-criteria decision-making methods: A review of applications in engineering. Scientia Iranica. Transaction A, Civil Engineering, 23(1), 1

Zavadskas, E. K., & Turskis, Z. (2011). Multiple criteria decision making (MCDM) methods in economics: an overview. Technological and economic development of economy, 17(2), 397-427