an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU

ELECTRONIC WASTE TREATMENT FLOWS IN NORWAY: INVESTIGATING RECYCLING RATES AND EMBODIED EMISSIONS

  • Kim Rainer Mattson - Industrial Ecology Program, Department of Energy and Process Engineering, Norwegian University of Science and Technology, Norway
  • Lærke Lindgreen Lauritsen - Industrial Ecology Program, Department of Energy and Process Engineering, Norwegian University of Science and Technology, Norway
  • Johan Berg Pettersen - Industrial Ecology Program, Department of Energy and Process Engineering, Norwegian University of Science and Technology, Norway

Access restricted to subscribed members only

Released under All rights reserved

Copyright: © 2023 CISA Publisher


Abstract

Norway is one of the countries in Europe generating the most waste from electrical and electronic equipment (WEEE) per capita. Extended producer responsibility schemes are incorporated as part of the national waste policy, with clear goals towards recovery of materials from the waste fraction. Investigating the WEEE flows in Norway, we observe clear improvements needed in the transparency of the sector, and based on the information gathered, we estimate lower recycling of materials than provided through official statistics based on reporting. 68% of WEEE sent to recycling treatments are recycled into reusable material. Accounting for WEEE occurring outside of the treatment system, only 58% is recovered for recycling. We also estimate the CO2-eq emissions of different End-of-Life treatments of WEEE, and the embodied CO2-equivalent emissions of each WEEE category, illustrating 1) what category carry the largest environmental burden with respect to its embedded materials, and 2) the environmental impact of specific treatment options within the system. We show how the recycling rate of precious metals have significant influence over the environmental impact recovery potential of the system. Its not just the amount of material that is recycled that is important, including a proxy for expended emissions effectively illustrates the need for more precise policy implementation to ensure a functional circular economy.

Keywords


Editorial History

  • Received: 25 Aug 2023
  • Revised: 18 Dec 2023
  • Accepted: 18 Dec 2023
  • Available online: 31 Dec 2023

References

Allesch, A., & Brunner, P. H. (2015). Material Flow Analysis as a Decision Support Tool for Waste Management: A Literature Review: MFA for Waste Management: A Literature Review. Journal of Industrial Ecology, 19(5), 753–764.
DOI 10.1111/jiec.12354

Babbitt, C. W., Althaf, S., Cruz Rios, F., Bilec, M. M., & Graedel, T. E. (2021). The role of design in circular economy solutions for critical materials. One Earth, 4(3), 353–362.
DOI 10.1016/j.oneear.2021.02.014

Babbitt, C. W., Madaka, H., Althaf, S., Kasulaitis, B., & Ryen, E. G. (2020). Disassembly-based bill of materials data for consumer electronic products. Scientific Data, 7(1), 251.
DOI 10.1038/s41597-020-0573-9

Barkhausen, R., Rostek, L., Miao, Z. C., & Zeller, V. (2023). Combinations of material flow analysis and life cycle assessment and their applicability to assess circular economy requirements in EU product regulations. A systematic literature review. Journal of Cleaner Production, 407, 137017.
DOI 10.1016/j.jclepro.2023.137017

Baxter, J., Lyng, K.-A., Askham, C., & Hanssen, O. J. (2016). High-quality collection and disposal of WEEE: Environmental impacts and resultant issues. Waste Management, 57, 17–26.
DOI 10.1016/j.wasman.2016.02.005

Baxter, J., Wahlstrom, M., Castell-Rüdenhausen, M. Z., Fråne, A., Stare, M., Løkke, S., & Pizzol, M. (2014). Plastic value chains: Case: WEEE (Waste Electric and electronic equipment) in the Nordic region

Beloin-Saint-Pierre, D., Albers, A., Hélias, A., Tiruta-Barna, L., Fantke, P., Levasseur, A., Benetto, E., Benoist, A., & Collet, P. (2020). Addressing temporal considerations in life cycle assessment. Science of The Total Environment, 743, 140700.
DOI 10.1016/j.scitotenv.2020.140700

Bigum, M., Brogaard, L., & Christensen, T. H. (2012). Metal recovery from high-grade WEEE: A life cycle assessment. Journal of Hazardous Materials, 207–208, 8–14.
DOI 10.1016/j.jhazmat.2011.10.001

Bridgens, B., Hobson, K., Lilley, D., Lee, J., Scott, J. L., & Wilson, G. T. (2019). Closing the Loop on E-waste: A Multidisciplinary Perspective. Journal of Industrial Ecology, 23(1), 169–181.
DOI 10.1111/jiec.12645

CIVAC, (2021), “Hvilke ressurser finnes i restavfallet”, URL: https://civac.no/dokumentasjon/hvilke-ressurser-finnes-i-restavfallet/ (last visited, 14.12.2023)

Constantinescu, A., Platon, V., Surugiu, M., Frone, S., Antonescu, D., & Mazilescu, R. (2022). The Influence of Eco-Investment on E-Waste Recycling-Evidence From EU Countries. Frontiers in Environmental Science, 10. https://www.frontiersin.org/articles/10.3389/fenvs.2022.928955

De Meester, S., Nachtergaele, P., Debaveye, S., Vos, P., & Dewulf, J. (2019). Using material flow analysis and life cycle assessment in decision support: A case study on WEEE valorization in Belgium. Resources, Conservation and Recycling, 142, 1–9.
DOI 10.1016/j.resconrec.2018.10.015

European Commission. Joint Research Centre. (2021). Material composition trends in vehicles: Critical raw materials and other relevant metals : preparing a dataset on secondary raw materials for the raw materials information system. Publications Office.
DOI 10.2760/351825

Fernando, W. A. M., Ilankoon, I. M. S. K., Krishnan, S. G., & Chokshi, V. (2019). The effects of packing shape and structure on liquid distribution of heap leaching systems: Addition of PCBs as non-ore particles. Hydrometallurgy, 187, 149–157.
DOI 10.1016/j.hydromet.2019.05.010

Fiore, S., Ibanescu, D., Teodosiu, C., & Ronco, A. (2019). Improving waste electric and electronic equipment management at full-scale by using material flow analysis and life cycle assessment. Science of The Total Environment, 659, 928–939.
DOI 10.1016/j.scitotenv.2018.12.417

Flygansvær, B., Samuelsen, A. G., & Støyle, R. V. (2021). The power of nudging: How adaptations in reverse logistics systems can improve end-consumer recycling behavior. International Journal of Physical Distribution & Logistics Management, 51(9), 958–977.
DOI 10.1108/IJPDLM-12-2020-0389

Forster, P., T. Storelvmo, K. Armour, W. Collins, J.-L. Dufresne, D. Frame, D.J. Lunt, T. Mauritsen, M.D. Palmer, M. Watanabe, M. Wild, and H. Zhang, (2021): The Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 923–1054,
DOI 10.1017/9781009157896.009

Fortier, S. M., Nassar, N. T., Graham, G. E., Hammarstrom, J. M., Day, W. C., & Mauk, J. L. (n.d.). USGS critical minerals review

Graedel, T. E., Reck, B. K., & Miatto, A. (2022). Alloy information helps prioritize material criticality lists. Nature Communications, 13(1), 150.
DOI 10.1038/s41467-021-27829-w

Hauschild, M. Z., & Huijbregts, M. A. J. (2015). Introducing Life Cycle Impact Assessment. In M. Z. Hauschild & M. A. J. Huijbregts (Eds.), Life Cycle Impact Assessment (pp. 1–16). Springer Netherlands.
DOI 10.1007/978-94-017-9744-3_1

He, Y., Hosseinzadeh-Bandbafha, H., Kiehbadroudinezhad, M., Peng, W., Tabatabaei, M., & Aghbashlo, M. (2023). Environmental footprint analysis of gold recycling from electronic waste: A comparative life cycle analysis. Journal of Cleaner Production, 432, 139675.
DOI 10.1016/j.jclepro.2023.139675

Hendriks, C., Obernosterer, R., Müller, D., Kytzia, S., Baccini, P., & Brunner, P. H. (2000). Material Flow Analysis: A tool to support environmental policy decision making. Case-studies on the city of Vienna and the Swiss lowlands. Local Environment, 5(3), 311–328.
DOI 10.1080/13549830050134257

Hertwich, E. G., & Roux, C. (2011). Greenhouse Gas Emissions from the Consumption of Electric and Electronic Equipment by Norwegian Households. Environmental Science & Technology, 45(19), 8190–8196.
DOI 10.1021/es201459c

Horta Arduin, R., Grimaud, G., Martínez Leal, J., Pompidou, S., Charbuillet, C., Laratte, B., Alix, T., & Perry, N. (2019). Influence of scope definition in recycling rate calculation for European e-waste extended producer responsibility. Waste Management, 84, 256–268.
DOI 10.1016/j.wasman.2018.12.002

Huijbregts, M. A. J., Steinmann, Z. J. N., Elshout, P. M. F., Stam, G., Verones, F., Vieira, M., Zijp, M., Hollander, A., & van Zelm, R. (2017). ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. The International Journal of Life Cycle Assessment, 22(2), 138–147.
DOI 10.1007/s11367-016-1246-y

Hung, C. R., Ellingsen, L. A.-W., & Majeau-Bettez, G. (2020). LiSET: A Framework for Early-Stage Life Cycle Screening of Emerging Technologies. Journal of Industrial Ecology, 24(1), 26–37.
DOI 10.1111/jiec.12807

IPCC, 2018: Annex I: Glossary [Matthews, J.B.R. (ed.)]. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 541-562.
DOI 10.1017/9781009157940.008

Ismail, H., & Hanafiah, M. M. (2019). An overview of LCA application in WEEE management: Current practices, progress and challenges. Journal of Cleaner Production, 232, 79–93.
DOI 10.1016/j.jclepro.2019.05.329

Jabbour, C. J. C., Colasante, A., D’Adamo, I., Rosa, P., & Sassanelli, C. (2023). Comprehending e-waste limited collection and recycling issues in Europe: A comparison of causes. Journal of Cleaner Production, 427, 139257.
DOI 10.1016/j.jclepro.2023.139257

Kaufman, S. M., Krishnan, N., & Themelis, N. J. (2010). A Screening Life Cycle Metric to Benchmark the Environmental Sustainability of Waste Management Systems. Environmental Science & Technology, 44(15), 5949–5955.
DOI 10.1021/es100505u

Lan, Y., Liu, Y., Cai, Y., Du, Q., Zhu, H., Tu, H., Xue, J., & Cheng, Z. (2023). Eight novel brominated flame retardants in indoor and outdoor dust samples from the E-waste recycling industrial park: Implications for human exposure. Environmental Research, 238, 117172.
DOI 10.1016/j.envres.2023.117172

Mahyapour, H., & Mohammadnejad, S. (2022). Optimization of the operating parameters in gold electro-refining. Minerals Engineering, 186, 107738.
DOI 10.1016/j.mineng.2022.107738

Messmann, L., Helbig, C., Thorenz, A., & Tuma, A. (2019). Economic and environmental benefits of recovery networks for WEEE in Europe. Journal of Cleaner Production, 222, 655–668.
DOI 10.1016/j.jclepro.2019.02.244

Mora-Sojo, M. C., Krych, K., & Pettersen, J. B. (2022). Evaluating the Current Norwegian Clothing System and a Circular Alternative (SSRN Scholarly Paper 4308369).
DOI 10.2139/ssrn.4308369

Mutel, C. (2017). Brightway: An open source framework for Life Cycle Assessment. The Journal of Open Source Software, 2(12), 236.
DOI 10.21105/joss.00236

Mutel, C. L., & Hellweg, S. (2009). Regionalized Life Cycle Assessment: Computational Methodology and Application to Inventory Databases. Environmental Science & Technology, 43(15), 5797–5803.
DOI 10.1021/es803002j

Norwegian Institute for Sustainability Research (NORSUS), 2021, Collection of Electronic Waste. Authors: Baxter, J., Prestrud, K., Egebæk, K. & Mckinnin, D. Commissioned by Norsk Industri

Oguchi, M., Sakanakura, H., & Terazono, A. (2013). Toxic metals in WEEE: Characterization and substance flow analysis in waste treatment processes. Science of The Total Environment, 463–464, 1124–1132.
DOI 10.1016/j.scitotenv.2012.07.078

Parajuly, K., Habib, K., & Liu, G. (2017). Waste electrical and electronic equipment (WEEE) in Denmark: Flows, quantities and management. Resources, Conservation and Recycling, 123, 85–92.
DOI 10.1016/j.resconrec.2016.08.004

Patil, R. A., & Ramakrishna, S. (2020). A comprehensive analysis of e-waste legislation worldwide. Environmental Science and Pollution Research, 27(13), 14412–14431.
DOI 10.1007/s11356-020-07992-1

Peng, P., & Shehabi, A. (2022). Regional economic potential for recycling consumer waste electronics in the United States. Nature Sustainability, 6(1), 93–102.
DOI 10.1038/s41893-022-00983-9

Pfister, S., Oberschelp, C., & Sonderegger, T. (2020). Regionalized LCA in practice: The need for a universal shapefile to match LCI and LCIA. The International Journal of Life Cycle Assessment, 25(10), 1867–1871.
DOI 10.1007/s11367-020-01816-7

Rigamonti, L., Taelman, S. E., Huysveld, S., Sfez, S., Ragaert, K., & Dewulf, J. (2020). A step forward in quantifying the substitutability of secondary materials in waste management life cycle assessment studies. Waste Management, 114, 331–340.
DOI 10.1016/j.wasman.2020.07.015

Rodriguez-Garcia, G. (n.d.). Chapter 7—Life Cycle Assessment in WEEE Recycling

Romero-Hernández, O., & Romero, S. (2018). Maximizing the value of waste: From waste management to the circular economy. Thunderbird International Business Review, 60(5), 757–764.
DOI 10.1002/tie.21968

Shahabuddin, M., Uddin, M. N., Chowdhury, J. I., Ahmed, S. F., Uddin, M. N., Mofijur, M., & Uddin, M. A. (2023). A review of the recent development, challenges, and opportunities of electronic waste (e-waste). International Journal of Environmental Science and Technology, 20(4), 4513–4520.
DOI 10.1007/s13762-022-04274-w

Song, R., Keller, A. A., & Suh, S. (2017). Rapid Life-Cycle Impact Screening Using Artificial Neural Networks. Environmental Science & Technology, 51(18), 10777–10785.
DOI 10.1021/acs.est.7b02862

Statistics Norway (SSB), Waste accounts - table 10513: https://www.ssb.no/en/statbank/table/10513 (last accessed 14.12.2023)

Stubbings, W. A., Abdallah, M. A.-E., Misiuta, K., Onwuamaegbu, U., Holland, J., Smith, L., Parkinson, C., McKinlay, R., & Harrad, S. (2021). Assessment of brominated flame retardants in a small mixed waste electronic and electrical equipment (WEEE) plastic recycling stream in the UK. Science of The Total Environment, 780, 146543.
DOI 10.1016/j.scitotenv.2021.146543

Ueberschaar, M., Geiping, J., Zamzow, M., Flamme, S., & Rotter, V. S. (2017). Assessment of element-specific recycling efficiency in WEEE pre-processing. Resources, Conservation and Recycling, 124, 25–41.
DOI 10.1016/j.resconrec.2017.04.006

Vadenbo, C., Hellweg, S., & Astrup, T. F. (2017). Let’s Be Clear(er) about Substitution: A Reporting Framework to Account for Product Displacement in Life Cycle Assessment: A Framework to Account for Substitution in LCA. Journal of Industrial Ecology, 21(5), 1078–1089.
DOI 10.1111/jiec.12519

Viau, S., Majeau-Bettez, G., Spreutels, L., Legros, R., Margni, M., & Samson, R. (2020). Substitution modelling in life cycle assessment of municipal solid waste management. Waste Management, 102, 795–803.
DOI 10.1016/j.wasman.2019.11.042

Wang, B., Ren, C., Dong, X., Zhang, B., & Wang, Z. (2019). Determinants shaping willingness towards on-line recycling behaviour: An empirical study of household e-waste recycling in China. Resources, Conservation and Recycling, 143, 218–225.
DOI 10.1016/j.resconrec.2019.01.005

Woods, J. S., Damiani, M., Fantke, P., Henderson, A. D., Johnston, J. M., Bare, J., Sala, S., Maia de Souza, D., Pfister, S., Posthuma, L., Rosenbaum, R. K., & Verones, F. (2018). Ecosystem quality in LCIA: Status quo, harmonization, and suggestions for the way forward. The International Journal of Life Cycle Assessment, 23(10), 1995–2006.
DOI 10.1007/s11367-017-1422-8