an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU


  • Mónica Calero - Department of Chemical Engineering, University of Granada, Spain
  • María Ángeles Martín-Lara - Department of Chemical Engineering, University of Granada, Spain
  • Verónica Godoy - Department of Chemical Engineering, University of Granada, Spain
  • Lucía Quesada - Department of Chemical Engineering, University of Granada, Spain
  • David Martínez - INGESIA Ingeniería y Medio Ambiente S.L., Spain
  • Francisco Peula - INGESIA Ingeniería y Medio Ambiente S.L., Spain
  • José Manuel Soto - INGESIA Ingeniería y Medio Ambiente S.L., Spain

Released under CC BY-NC-ND

Copyright: © 2018 CISA Publisher


In the EU, 25.8 million tons of plastic wastes are generated each year and more than 30% end up in landfills. In Spain, this percentage rises up to 50%. Mechanical recycling is currently one of the best alternatives to reduce problems associated with poor management of plastic waste. In this paper, an analytical laboratory study of several samples of municipal plastic waste from Granada (Spain) was presented. The samples were supplied by the Waste Treatment Plant (Ecocentral). The study was based on the measurement of the moisture and dirt content of the selected plastic waste. Those parameters were determined by washing and drying the waste and analyzing the washing wastewater; in order to determine/justify the need of a washing step and a post-treatment of the washing water. The results showed that the differences in moisture and dirt content were significant between the different types of polymers, which could influence in the economic profitability of mechanical recycling. Polystyrene (PS) is the material that loosed the most weight while polypropylene (PP) loosed least weight. Moreover, the washing wastewater shows parameters that comply with the discharge regulations of Granada (Spain), except for the case of polyethylene film, whose wastewater would require pre-treatment prior to discharge. Overall, the results were satisfactory, as they show that most of the ordinary plastic waste can be recycled without high cost.


Editorial History

  • Received: 06 Jun 2018
  • Revised: 31 Aug 2018
  • Accepted: 12 Nov 2018
  • Available online: 21 Nov 2018


AENOR. UNE 77031:2015. Calidad del agua. Determinación de los sólidos disueltos

AENOR. UNE-EN 14346:2007. Characterization Of Waste-Calculation Of Dry Matter By Determination Of Dry Residue Or Water Content

Al-Sabagh, A., Yehia, F., Eshaq, G., Rabie, A. and ElMetwally, A. (2016). Greener routes for recycling of polyethylene terephthalate. Egyptian Journal of Petroleum, 25, 53-64

Araújo, J.R., Waldman, W.R., De Paoli, M.A. (2008). Thermal properties of high density polyethylene composites with natural fibres: coupling agent effect. Polymer Degradation and Stability, 93, 1770-1775

Ashraf, A. (2015). Thermal analysis of polymer by DSC technique. Center for Advanced Materials, Qatar University

Awaja, F. and Pavel, D. (2005). Recycling of PET. European Polymer Journal, 41, 1453-1477

Ayuntamiento de Granada (2010). Ordenanza Municipal Reguladora de los Vertidos a la Red de Alcantarillado del Ayuntamiento de Granada. Boletín Oficial Provincial 137, 58-77

Bozaci, E., Arik, B., Demir, A. and Özdogan, E. (2012). Potential use of new methods for identification of hollow polyester fibres. Tekstil ve Konfeksiyon 4, 317-323

Carranza, N. (2010). Diseño del proceso de lavado de residuos plásticos provenientes de invernadero. Escuela Politécnica Nacional, Quito, Ecuador

Chianelli-Junior, R., Reis, J.M.L., Cardoso, J.L., Castro, P.F. (2013). Mechanical characterization of sisal fiber-reinforced recycled HDPE composites. Materials Research, 16 (6), 1393-1397

EAG Laboratories (2018). Using differential scanning calorimetry to characterize polymers. United States: Azo Materials. Recovered from on 4 June 2018

Hindle, C. (2018). Polypropylene (PP). Edinburgh Napier University. Recovered from on 27 July 2018

Hopewell, J., Dvorak, R., Kosior, E. (2009). Plastics recycling: challenges and opportunities. Philosophical Transactions of The Royal Society B, 364, 2115-2126

International Organization for Standardization. ISO 11357-3:2018. Plastics. Differential scanning calorimetry (DSC). Part 3: Determination of temperature and enthalpy of melting and crystallization

International Organization for Standardization. ISO 6060:1989. Water Quality. Determination of the chemical oxygen demand

Kratofil, L., Hrnjak, Z. and Katančic, Z. (2014). Plastics and priority during the recycling. In: N. Gaurina-Medjimurec (ed.), Handbook of research on advancements in environmental engineering (pp. 257-284)

Luijsterburg, B. (2015). Mechanical recycling of plastic packaging waste. PhD Thesis. Technische Universiteit Eindhoven, The Netherlands

Mofokeng, J., Luyt, A., Tábi, T. and Kovács, J. (2011). Comparison of injection moulded, natural fibre-reinforced composites with PP and PLA as matrices. Journal of Thermoplastic Composite Material, 25(8), 927-948

Oliveira, R., Ferreira, C., Peixoto, L., Bianchi, O., Silva, P., Demori, R., Silva, R. and Veronese, V. (2013). Mistura polipropileno/poliestireno: um exemplo da relação processamento-estrutura-propriedade no ensino de polímeros. Polímeros, 23(1), 91-96

Parres-García, F. (2005). Investigación de las variables limitantes en la recuperación de residuos de poliestireno procedentes del sector envase. Tesis Doctoral. Universidad Politécnica de Valencia, Valencia, España

PlasticsEurope (2015). Business Data and Charts 2015- Spain. PlasticsEurope. Recovered from on 10 April 2018

PlasticsEurope (2016). An analysis of European plastics production, demand and waste data. Plastics - the Facts 2016. PlasticsEurope. Recovered from on 10 April 2018

Poley, L.H., Siqueira, A., Da Silva, M., Vargas, H. (2004). Phototermal characterization of low density polyethylene food packages. Polímeros: Ciência e Tecnologia, 14 (1), 8-12

Rodríguez-Bruceta, P.A., Pérez-Rodríguez, A. and Velázquez-Infante, J. (2014). Propuesta de un procedimiento para el reciclado del polietileno de alta densidad. Revista Cubana de Química, 27, 32-54

Rojo-Nieto, E. and Montoto, T. (2017). Basuras marinas, plásticos y microplásticos: orígenes, impactos y consecuencias de una amenaza global. Madrid, España: Ecologistas en Acción

Shnawa, H.A., Khaleel, M.I., Muhamed, F.J. (2015). Oxidation of HDPE in the presence of PVC grafted with natural polyphenols (tannins) as antioxidant. Open Journal of Polymer Chemistry, 5, 9-16

Smith, B.C. (1999). Infrared spectral interpretation. A systematic approach. United States: CRC Press

Vahur, S., Teearu, A., Peets, P., Joosu, L. and Leito, I. (2016). ATR-FT-IR spectral collection of conservation materials in the extended region of 4000-80 cm-1. Analytical and Bioanalytical Chemistry, 408, 3373-3379

World Economic Forum, Ellen MacArthur Foundation and McKinsey & Company (2016). The New Plastics Economy — Rethinking the future of plastics. Recovered from on 13 January 2018

Zieba-Palus, J. (2017). The usefulness of infrared spectroscopy in examinations of adhesive tapes for forensic purposes. Forensic Science and Criminology