an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU


  • Juan Carlos Hernández Parrodi - New-Mine project, Renewi Belgium SA/NV, Belgium - Department of Environmental and Energy Process Engineering, Montanuniversitat Leoben, Austria
  • Cristina Garcia Lopez - Institut für Aufbereitung und Recycling, RWTH Aachen University, Germany
  • Bastian Küppers - Montanuniversitaet Leoben, Austria
  • Karoline Raulf - Department of Processing and Recycling, Rheinisch Westfalische Technische Hochschule Aachen, Germany
  • Daniel Vollprecht - Montanuniversität Leoben, Austria
  • Thomas Pretz - Department of Processing and Recycling, RWTH Aachen University, Germany
  • Roland Pomberger - Montanuniversitat Leoben, Austria


Released under CC BY-NC-ND

Copyright: © 2019 CISA Publisher


Within the framework of the “EU Training Network for Resource Recovery through Enhanced Landfill Mining – NEW-MINE”, around 371 Mg of waste were excavated from a landfill site in Mont-Saint-Guibert, Belgium. Parameters such as bulk density, water content, particle size distribution and material composition of the fine fractions (material <90 mm) were determined and analyzed. The variations of bulk density and water content with particle size were studied as well and grouped material fractions were employed for the classification of the material composition. The present article has the main objective to document and disseminate the findings on the material characterization of the fine fractions obtained in this case study, since such information is of critical relevance for the design of an effective and efficient mechanical processing in (enhanced) landfill mining projects. Additionally, the potential of fine fractions for material and energy recovery is discussed. The fine fractions accounted for about 77 wt.% of the total amount of excavated material in raw state. These fractions presented an overall bulk density range of 720-1000 kg/m3 (raw state) and a total water content range of 25-30 wt.%. Results on the material composition in dry state reveal that amounts of 2.1-19.7 wt.% “Combustibles”, 31.1-35.4 wt.% “Inert” and 0.6-1.8 wt.% “Total metals” could be recovered from fine fractions 90-10 mm, while 37.8-55.6 wt.% “Fine fractions <10 mm” could be processed further in order to increase the recovery amounts of the previous fractions and produce a soil substitute material.


Editorial History

  • Received: 11 Jun 2019
  • Revised: 02 Aug 2019
  • Accepted: 19 Aug 2019
  • Available online: 23 Dec 2019


Bhatnagar, A., Kaczala, F., Burlakovs, J., Kriipsalu, M., Hogland, M., Hogland, W., 2017. Hunting for valuables from landfills and assessing their market opportunities: A case study with Kudjape landfill in Estonia. Waste Management & Research 17, 0734242X1769781. 10.1177/0734242X17697816

Bureau d´études greisch, 2002. Centre d´Enfouissement Technique de Mont-Saint-Guibert: Etude des conséquences de l´octroi du permis d´urbanisme du 29.10.01 sur les conditions d´exploitation du permis du 16.12.98

D´Or, D., 2013. Modélisation et caractérisation des émissions surfaciques de biogaz sur les C.E.T. en RW: Traitement des données de la champagne de mesures de septembre-octobre 2012 sur le CETeM. Ephesia Consult

Gaël, D., Tanguy, R., Nicolas, M., Frédéric, N., 2017. Assessment of multiple geophysical techniques for the characterization of municipal waste deposit sites. Journal of Applied Geophysics 145, 74–83. 10.1016/j.jappgeo.2017.07.013

García López, C., Ni, A., Hernández Parrodi, J.C., Küppers, B., Raulf, K., & Pretz, T. (2019). Characterization of landfill mining material after ballistic separation to evaluate material and energy recovery potential. Detritus, 8(1).
DOI 10.31025/2611-4135/2019.13780

Hernández Parrodi, J.C., Höllen, D., Pomberger, R., 2018a. Characterization of fine fractions from landfill mining: A review of previous investigations. Detritus 2 (1), 46–62. 10.31025/2611-4135/2018.13663

Hernández Parrodi, J.C., Höllen, D., Pomberger, R., 2018b. Potential and main technological challenges for material and energy recovery from fine fractions of landfill mining: A critical review. Detritus 3 (1), 19–29.
DOI 10.31025/2611-4135/2018.13689

Hernández Parrodi, J.C., Lucas, H., Gigantino, M., Sauve, G., Esguerra, J.L., Einhäupl, P., et al. (2019). Integration of resource recovery into current waste management through (enhanced) landfill mining. Detritus, 8(1)

Hull, R.M., Krogmann, U., Strom, P.F., 2005. Composition and Characteristics of Excavated Materials from a New Jersey Landfill. J. Environ. Eng. 131 (3), 478–490. 10.1061/(ASCE)0733-9372(2005)131:3(478)

IGRETEC, 1994. Centre d´Enfouissement Technique de Mont-Saint-Guibert: Etudie des incidences sur l´environnement

Jones, P.T., Geysen, D., Rossy, A., Bienge, K., 2010. Enhanced Landfill Mining (ELFM) and Enhanced Waste Management (EWM): essential components for the transition to Sustainable Materials Management (SMM). Proceedings of the 1st International Academic Symposium on Enhanced Landfill Mining. 4-6 October, 2010. Houthalen-Helchteren, Belgium

Jones, P.T., Geysen, D., Tielemans, Y., van Passel, S., Pontikes, Y., Blanpain, B., Quaghebeur, M., Hoekstra, N., 2013. Enhanced Landfill Mining in view of multiple resource recovery: a critical review. Journal of Cleaner Production 55, 45–55. 10.1016/j.jclepro.2012.05.021

Jones, P.T., Tielemans, Y., 2010. Enhanced Landfill Mining and the Transition to Sustainable Materials Management. Proceedings of the 1st International Academic Symposium on Enhanced Landfill Mining. 4-6 October, 2010. Houthalen-Helchteren, Belgium, 325

Krook, J., Svensson, N., Eklund, M., 2012. Landfill mining: A critical review of two decades of research. Waste Management 32 (3), 513–520. 10.1016/j.wasman.2011.10.015

Münnich, K., Fricke, K., Wanka, S., Zeiner, A., 2013. Landfill Mining: A contribution to conservation of natural resources? Proceedings Sardinia 2013. Fourteenth International Waste Management and Landfill Symposium. 30 Sep. - 4 Oct., 2013. S. M. di Pula, Cagliari, Italy