an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU


  • Emelie Andersson - Waste Science and Technology, Luleå University of Technology, Norway
  • Marit Jobs - Waste Science and Technology, Luleå University of Technology, Sweden
  • Anders Lagerkvist - Waste Science and Technology, Luleå University of Technology, Sweden
  • Lennart Elfgren - Waste Science and Technology, Luleå University of Technology, Sweden


Released under CC BY-NC-ND

Copyright: © 2020 CISA Publisher


As the resource recovery from mixed waste streams are performed, new mixed waste streams are generated. Some of these waste streams does not fit well to existing waste management options, for example, they may hold a to low heating value to sustain combustion and they may have a too high carbon content to be accepted at non-hazardous landfills. Also various health and pollution risks may arise as well as practical handling issues due to the physical properties of such wastes. One such waste is the under sieve fraction generated when recovering metals and fuel from mixed waste streams using mechanical and magnetic separation tools. Such mechanical sorting is typically used for mixed wastes of different properties and particle sizes, such as houshold bulky wastes, construction and demolition waste, and at landfill mining materials. In this work, we examine the properties of one case of mechanical sorting of bulky wastes, including construction and demolition wastes. We analyse a broad spectrum of chemical, physical, and mechanical properties as well as some biological. Based on the data we develop recommendations for landfilling, what potential problems might arise and how to counteract them.


Editorial History

  • Received: 01 Dec 2020
  • Revised: 21 Apr 2021
  • Accepted: 03 May 2021
  • Available online: 30 Jun 2021


Andersson, E. & Jobs, M. (2013) Mekanisk och biogeokemisk karaktärisering av mekaniskt upparbetad deponirest vid Ragn-Sells Avfallsbehandling AB:s avfallsanläggning Högbytorp i Upplands Bro,Luleå University of Technology

Babu, G.L.S, Reddy, K. R. & Chouksey, S. K. 2011. Parametric study of MSW landfill settlement model. Waste Management, Volym 31, Issue 6, p. 1222–1231

Beaven, R. P., Powrie, W., & Zardava, K. (2008). Hydraulic properties of MSW. Paper presented at the Geotechnical Special Publication, (209 GSP) 1-43.
DOI 10.1061/41146(395)

Beaven, R. D. & Powrie, (1995). Determination of the hydrological and geotechnical properties of refuse using large scale compression cell. SARDINIA ’95 — Fifth International Landfill Symposium, pp. 745-760

Dewaele, P., Fleming, I. & Coulter, S., 2011. Waste excavation and screening for reclamation and re-engineering of a municipal landfill site. Proceedings Sardinia 2011, Thirteenth International Waste Management and Landfill Symposium, S. Margherita di Pula, Cagliari, Italy; 3 - 7 October 2011, pp. 851-852

Choudhury , D. & Savoikar , P., (2009). Simplified method to characterize municipal solid waste properties under seismic conditions. Waste Management, 29(2), pp. 924-933

EPA (2000) (Draft) Technical Guidance For RCRA/CERCLA Final Covers, EPA 540-R-04-007, Office of Solid Waste and Emergency Response, Washington DC, USA

Hossain, M., Gabr, M. & Asce, F., 2009. The effect of shredding and test apparatus size on compressibility and strength parameters of degraded municipal solid waste. Waste Management, 29(9), pp. 2417-2424

Hudson, A. P., White, J. K., Beaven, R. P. & Powrie, W., (2004). Modelling the compression behaviour of landfilled domestic waste. Waste Management, Issue 24, pp. 259-269

Hudson, A., Beaven, R. & Powrie, W., (2009). Assessment of vertical and horizontal hydraulic conductivites of household waste in a large scale compression cell. Sardinia 2009 : Twelfth International Waste Management and Landfill Symposium. S. Margherita di Pula, Italy, s.n., pp. 641-642

ITRC (2017) Incremental Sampling Technology, see section Analytical splitting and subsampling techniques. Interstate Technology & Regulatory Council, Washington DC, USA

IWCS (2009) Landfill Reclamation Demonstration Project. A report prepared by Innovative Waste Consulting Services, LCC and submitted to Florida Department of Environmental Protection and Escambia County Division of Solid Waste Management -

Lagerkvist, A. (2003) Landfill Technology, Luleå University of Technology, Technical report 2003:15

Lagerkvist, A., and Cossu, R., (2005) Leachate recirculation : concepts and applications. Sardinia 2005 : Tenth International Waste Management and Landfill Symposium. Cagliari :CISA, Environmental Sanitary Engineering Centre. 12 p

Machado, S. L. et al. (2012). Evaluation of the geotechnical properties of MSW in two Brazilian landfills. Waste Management, 30, pp. 2579-2591

Maraques et al. (2003): Marques, A. C. M., Filz, G. & Monje, O., 2003. Composite Compressibility Model for Municipal Solid Waste. Journal of geotechnical and geoenvironmental engineering, April.pp. 372-378

Naturvårdsverket (2016): Sveriges avfallsmängder ökar fortfarande (Swedish waste is still increasing. In Swedish) Swedish Environmental Protection Agency, Press realease:

Ohlsson, T., Flyhammar, P., Bendz, D. & Bozkurt, S., 2000. "Sardinia ´99, Seventh Waste and Landfill Symposium - en sammanställning av aktuell deponiforskning, Stockholm: Naturvårdsverket

Pitard, F. F. (1989) Pierre Gy´s Sampling Theory and Sampling Practice. Florida: CRC Press Inc

Stark, T. D., Huvaj-Sarihan, N. & Li, G., 2009. Shear strength of municipal solid waste for stability analyses. Environ Geo, Volym 57, pp. 1911-1923

Reddy, K. et al., 2009. Geotechnical properties of fresh municipal solid waste at Orchard Hills Landfill. Waste Management, 29(2), pp. 950-959

SGI, 2007. Deponiers stabilitet, Vägledning för beräkning, Linköping: Statens geotekniska institut

Sowers, G. F. (1973) Settlement of waste disposal fills, proc 8th ICSMFE, Moscow, 2: 207-211

Stoltz, G., Gourc, J.-P. & Oxarango, L., 2010. Characterisation of the physicomechanical parameters of MSW. Waste Management, Volym 30, pp. 1439- 1449

SS 027109, 1994. Geotekniska provtagningsmetoder - Packningsegenskaper - Laboratoriepackning, s.l.: Swedish Standards Commission

SS-EN 12457-4, 2003. Karaktärisering av avfall - Laktest - Kontrolltest för utlakning från granulära material och slam, s.l.: Swedish Standards Commission

SS-EN 13137, 2001. Karaktärisering av avfall - bestämning av totala mängden organiskt kol i avfall, slam och sediment, s.l Swedish Standards Commission

SS-EN 14346, 2007. Karaktärisering av avfall-beräkning av torrhalt baserad på torrsubstans och vatteninnehåll, s.l.: Swedish Standards Commission

SS-EN 15169, 2007. Karaktärisering av avfall - bestämning av glödförlust vid upphettning av avfall, slam och sediment, s.l.: Swedish Standards Commission

SS-EN 933-1, 2012. Ballast - Geometriska egenskaper- - Del 1: Bestämning av kornfördelning - Siktning., s.l.: Swedish Standards Commission

SS-ISO 11277 , 2001. Markundersökningar - bestämning av kornstorleksfördelning i mineraldelen av jord - sikt- och sedimentationsmetod., s.l.: Swedish Standards Commission

Swedish EPA, 2004. Handbook 2004:2, Landfilling of waste. NFS 2004:5

Svensk standard, 1994. Geotekniska provtagningsmetoder - Packningsegenskaper - Laboratoriepackning. Stockholm: Swedish Standards Commission

Turer, D. & Turer, A., 2011. A simplified approach for slope stability analysisof uncontrolled waste dumps. Waste Management and research, 29(2), pp.146-156

USEPA (1994a) Trace Elements in Water, Solids, and Biosolids by Inductively Coupled Plasma-atomic Emission Spectrometry. U.S. Environmental Protection Agency

USEPA (1994b) Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma - Mass Spectrometry. Cited 155 times. U.S. Environmental Protection Agency

Zekkos, D. et al., 2006. Unit Weight of Municipal Solid Waste. Journal of geotechnical and geoenvironmental engineering, 132(10), pp. 1250-1261

Zekkos, D. et al., 2010. Large-scale direct shear testing of municipal solid waste. Waste Managment, August-September, 30(8-9), pp. 1544-1555