an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU
Full Lenght Research Article

ANALYSIS OF SEWAGE SLUDGE THERMAL TREATMENT METHODS IN THE CONTEXT OF CIRCULAR ECONOMY

  • Anna Tsybina - Environmental Protection Department, Perm National Research Polytechnic University, Russia
  • Christoph Wuensch - Institute of Waste Management and Circular Economy, Dresden Technical University, Germany

DOI 10.31025/2611-4135/2018.13668

Released under CC BY-NC-ND

Copyright: © 2018 Cisa Publisher

Editorial History

  • Received: 17 Jan 2018
  • Revised: 07 May 2018
  • Accepted: 20 Jun 2018
  • Available online: 30 Jun 2018

Abstract

As of now, the most common applications of sewage sludge treatment and disposal methods globally are in agriculture and deposition in landfills. In particular, landfill disposal causes problems associated with environmental pollution, as well as problems caused by the loss of the chance to recover energy and nutrients out of the sewage sludge. The critical content of hazardous substances in the sewage sludge makes its use in agriculture as fertilizer questionable. Thermal treatment methods offer a solution to these problems because energy can be recovered and used, some hazardous materials can be destroyed or removed, and valuable nutrients such as phosphorus can be utilized in the generated products or recovered from these products. In a first step, the objective and scope of the study and especially the important characteristics of the circular economy when considering sewage sludge treatment possibilities is described. Based on these characteristics for the three investigated thermal treatment methods – incineration, gasification and pyrolysis – a comparative analysis on the basis of a suggested set of criteria (1. cost, 2. energy efficiency, 3. nutrient recovery, 4. product market value and 5. flexibility) was carried out. In the result, incineration of sewage sludge performs best in terms of treatment costs, energy efficiency, nutrient recovery, and flexibility concerning feedstock dry matter content. Pyrolysis performs best in terms of market value of the generated products and flexibility regarding plant size.


Keywords


References

Adam C., Peplinski B., Michaelins M., Kley G. and Simon F.-G. (2009) Thermochemical treatment of sewage sludge ashes for phosphorus recovery. In Waste Management 29 (2009) 1122-1128

Alvarenga, P., Mourinha, C., Farto, M., Santos, T., Palma, P., Sengo, J., Morais, M.C., Cunha-Queda, C., 2015. Sewage sludge, compost and other representative organic wastes as agricultural soil amendments: Benefits versus limiting factors. Waste Manag. 40, 44–52.
DOI 10.1016/j.wasman.2015.01.027

Brunner P. and Rechenberger H. (2015). Waste to energy – key element for sustainable waste management. In Waste Management 37 (2015) 3-12

Buehler F. and Schlumberger S. (2014) Phosphormining aus Klärschlammasche - Nasschemische Extraktion – LEACHPHOS eine Lösung die funktioniert. Presentation 21.01.2014

Cao Y., Shan S., 2011. Sustainable approach to energy recovery from sewage sludge. 2nd International Conference on Environmental Engineering and Applications IPCBEE vol.17 (2011)

Cieślik, B., Konieczka, P., 2017. A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of “no solid waste generation” and analytical methods. J. Clean. Prod.
DOI 10.1016/j.jclepro.2016.11.116

CORDIS (2017). Final Report Summary - PYROCHAR (PYROlysis based process to convert small WWTP sewage sludge into useful bioCHAR).

Deng W., Li X., Yan J., Wang F., Chi Y., Cen K. (2011). Moisture distribution in sludges based on different testing methods. J. Environ. Sci., vol. 23, n. 5, 875-880.

DeRuiter R., 2014. The EcoPhos Technology to close the P cycle and safeguard the world's food chain. Presentation at Workshop Abwasser – Phosphor – Dünger. 28–29 (January 2014. Berlin).

Directive 2008/98/EC of the European Parliament and the Council of 19 November 2008 on waste and repealing certain Directives (2008). Official Journal of the European Union, L 312, 3-30.

Drissen P. (2012). Ressourceneffiziente Herstellung von Dünger aus Stahlwerksschlacke und P2O5-haltigen Reststoffen, FEhs – Institut für Baustoffforschung e.V., Report 19/2, Duisburg.

Egle L., Rechberger H., Krmpe J. and Zessner M. (2016). Phosphorus recovery from municipal wastewater: An integrated comparative technological, environmental and economic assessment of P recovery technologies. in Science of the Total Environment 571 (2016) 522–542

EISENMANN Anlagenbau GmbH & Co.KG Environmental Technology (2017). Thermal treatment of sewage sludge in the Pyrobustor.

Ellen McArthur Foundation (2013). Towards the Circular Economy: Economic and business rationale for an accelerated transition.

EPA, U.S. (2012). Technology Assessment Report: Aqueous Sludge Gasification. U.S. Environmental Protection Energy.

Eriksson E., Christensen N., Ejbye Schmidt J., Ledin A. (2007). Potential priority pollutants in sewage sludge. In Desalination 226 (2008) 371–388

European Commission (2015). Closing the loop - An EU action plan for the Circular Economy.

Eurostat (2013). Sewage sludge disposal from urban wastewater treatment, by type of treatment.

Frank J. (2015). Monoverbrennung von Klärschlamm – Ab welcher Größe ist das realistisch? Presentation at Fach-Seminar zum Thema Abwasserreinigung und Klärschlamm Neue Erkenntnisse aus Forschung und Praxis im Schloss Etelsen, 19th of march 2015

Franck J., Schroeder, L. (2014). Zukunftsfähigkeit kleinerer Anlagen der thermischen Klärschlammverwertung, Presentation at Klärschlammbehandlung – eine Veranstaltung des VDI-Wissensforums, 17.09.2014.

Franck J. And Schroeder L. (2015). Zukunftsfähigkeit kleiner Klärschlammverbrennungsanlagen. In Energie aus Abfall, Band 12, ISBN: 978-3-944310-18-3, TK Verlag, Neuruppin, Januar 2015

Glatzer A., Fiedrich M. (2015). Klärschlamm-Monoverbrennung – wirtschaftliche und technische Grenzen, presentation at 1. DWA- Netzwerktag Klärschlammnetzwerk Nord-Ost 9.9.2015, Berlin-Steglitz.

Gorazda K., Tarko B., Werle S. and Wzorek Z. (2018). Sewage sludge as a fuel and raw material for phosphorus recovery: Combined process of gasification and P extraction. In Waste Management 73 (2018) 404-415

Greenlife Ressourcen GmbH (2017). Recycling of sewage sludges: pyrolysis.

Gruener and Reinmoeller (2016). Phosphorrecycling mit dem Nephrec-Verfahren – Betriebserfahrungen. Presentation at the Berliner Abfallwirtschafts- und Energiekonferenz, Berlin, 31.01.2016

Guedes, P., Couto, N., Ottosen, L.M., Ribeiro, A.B., 2014. Phosphorus recovery from sewage sludge ash through an electrodialytic process. Waste Manag. 34, 886–892.
DOI 10.1016/j.wasman.2014.02.021

Houillon, G., Jolliet, O., 2005. Life cycle assessment of processes for the treatment of wastewater urban sludge: Energy and global warming analysis, in: Journal of Cleaner Production. Elsevier, pp. 287–299.
DOI 10.1016/j.jclepro.2004.02.022.

Infraserv (2018). Sewage Sludge Incineration: Safe and Environmentally Responsible, brochure

IPPC (2006). Reference Document on the Best Available Techniques for Waste Incineration. The European IPPC Bureau.

Kim Y., Parker W., 2008. Bioresource Technology 99 (2008) 1409–1416.
DOI 10.1016/j.biortech.2007.01.056

Khodyashev M.B., Glushankova I.S., Dyakov M.S. (2009). Methodological approaches to the development of a technology of thermal treatment of solid oil-containing wastes of oil refineries [Методологические подходы к разработке технологии термической утилизации твердых нефтесодержащих отходов нефтеперерабатывающих предприятий]. Ekologiya i promyshlennost Rossii, November 2009, 2-5.

Li, R., Teng, W., Li, Y., Wang, W., Cui, R., Yang, T., 2017. Potential recovery of phosphorus during the fluidized bed incineration of sewage sludge. J. Clean. Prod. 140, 964–970.
DOI 10.1016/j.jclepro.2016.06.177

Lumley N.P.G., Ramey D.F., Prieto A.L., Braun R.J., Cath T.Y., Porter J.M. (2014). Techno-economic analysis of wastewater sludge gasification: A decentralized urban perspective. Bioresource Technol. 161, 385–394.

Lundin M., Olofsson M., Pettersson G.J., Zetterlund H., 2004. Environmental and economic assessment of sewage sludge handling options, in: Resources, Conservation and Recycling 41, 255–278.
DOI 10.1016/j.resconrec.2003.10.006

Mills N. (2015). Unlocking the Full Energy Potential of Sewage Sludge. University of Surrey.

Morgano M.T., Leibold H., Richter F., Seifert H., Stapf D. (2016). Screw Pyrolysis of Sewage Sludge: A Techno-economic Analysis, Presentation at Symposium on Thermal and Catalytic Sciences for Biofuels and Biobased Products, November 1–4, 2016, The Friday Center, University of North Carolina, Chapel Hill.

Neumann U., Tittesz R. (2011). Der Pyrobustor – zwei Praxisbeispiele zur Klärschlammpyrolyse. In Energie aus Abfall Band 8, ISBN 978-3-935317-60-3,TK-Verlag, Neuruppin, 2011.

Nowak B., Perutka L., Aschenbrenner P., Kraus P., Rechberger H., Winter F., (2011). Limitations for heavy metal release during thermo-chemical treatment of sewage sludge ash. in Waste Manag. 31 (6), 1285–1291

Outotec (2016). Sustainable Sewage Sludge Incineration for Zürich Canton. Outotec SEAP Costomer eNewsletter 1/2016

ÖWAV (2013). ÖWAV – Österreichischer Wasser- und Abfallwirtschaftsverband, 2013. Energetische Wirkungsgrade von Abfallverbrennungsanlagen, ÖWAV- Regelblatt 519. Austrian Standards plus Publishing, 1020 Vienna, Heinestraße 2

Pavlík Z., Fort J., Zalesk M., Milena Pavlíkova M., Trník A., Medved I., Keppert M., Koutsoukos P., Cerný R. (2016). Energy-efficient thermal treatment of sewage sludge for its application in blended cements in Journal of Cleaner Production 112 (2016) 409-419

Pinnekamp J., Montag D., Hell J., Gajic D., Rath W., Dittrich C., Pfennig A., Kröckel J., Abdellatif T., Dott W., Zimmermann J., Doetsch P., van Norden H., Grömping M. And Seyfried a. (2010). Rueckgewinnung von Pflanzennährstoffen, insbesondere Phosphor aus der Asche von Klaerschlamm, Schlussbericht, Mai 2010

Raheem A., Singh Sikarwar V., He J., Dastyar W., Dionysiou D., Wang W., Zhao M. (2018). Opportunities and challenges in sustainable treatment and resource reuse of sewage sludge: A review. In Chemical Engineering Journal 337 (2018) 616-641

Smol, M., Kulczycka, J., Henclik, A., Gorazda, K., Wzorek, Z., 2015. The possible use of sewage sludge ash (SSA) in the construction industry as a way towards a circular economy. J. Clean. Prod.
DOI 10.1016/j.jclepro.2015.02.051

Spinosa L., Ayol A., Baudez J.-C., Canziani R., Jenicek P., Leonard A., Rulkens W., Xu G., van Dijk L. (2011). Sustainable and Innovative Solutions for Sewage Sludge Management. Water, vol. 3, 702-717.

Stasta, P., Boran, J., Bebar, L., Stehlik, P., Oral, J., 2006. Thermal processing of sewage sludge. Appl. Therm. Eng. 26, 1420–1426.
DOI 10.1016/j.applthermaleng.2005.05.030.

Sülzle Kopf Anlagenbau GmbH (2017). SynGas solutions.

Tan, Z., Lagerkvist, A., 2011. Phosphorus recovery from the biomass ash: A review. Renew. Sustain. Energy Rev.
DOI 10.1016/j.rser.2011.05.016

Uggetti, E., Llorens, E., Pedescoll, A., Ferrer, I., Castellnou, R., García, J., 2009. Sludge dewatering and stabilization in drying reed beds: Characterization of three full-scale systems in Catalonia, Spain. Bioresour. Technol. 100, 3882–3890.
DOI 10.1016/J.BIORTECH.2009.03.047.

UN-HABITAT (2008). Global atlas on excreta, wastewater sludge, and biosolids management: moving forward the sustainable and welcome uses of a global resource: LeBlanc, Matthews, Richard (Eds).

Vadenbo, C., Guillén-Gosálbez, G., Saner, D., Hellweg, S., 2014. Multi-objective optimization of waste and resource management in industrial networks - Part II: Model application to the treatment of sewage sludge. Resour. Conserv. Recycl. 89, 41–51.
DOI 10.1016/j.resconrec.2014.05.009

Valderrama, C., Granados, R., Cortina, J.L., Gasol, C.M., Guillem, M., Josa, A., 2013. Comparative LCA of sewage sludge valorisation as both fuel and raw material substitute in clinker production. J. Clean. Prod. 51, 205–213.
DOI 10.1016/j.jclepro.2013.01.026

Waida C., Weinfurtner K., Gäth S.A. (2010). Bewertung verschiedener Sekundärphosphate aus Abwasser, Klärschlamm und Klärschlammasche, In: 43. Essener Tagung für Wasser- und Abfallwirtschaft, GWA, Heft 220, S. 39/1-39/12, RWTH Aachen, Aachen.

Weigand H., Bertau M., Hübner W., Bohndick F. and Bruckert, A. (2013). RecoPhos: full-scale fertilizer production from sewage sludge ash. Waste Manag. 33 (3), 540–544.

Werle S. (2016). Sewage sludge gasification process for clean and sustainable environment. Renew. Energy Environ. Sustain. 1, 35.

Wiechmann B., Dienemann C., Kabbe C., Brandt S., Vogel I., Roskosch A. (2013). Sewage sludge management in Germany.

Winkler M.J. (2012). Gasification of Sludge and Biosolids – A Review of Technology Fundamentals and the Current Commercial Status, presentation at the PNCWA 2012, on October 24th 2012, Boise, Idaho.


oct
15
feb
23
sep
30