Released under CC BY-NC-ND
Copyright: © 2020 CISA Publisher
AEPC, Urban Domestic Biogas, Altern. Energy Promot. Cent. (2013). https://www.aepc.gov.np/urban-domestic-biogas (accessed September 9, 2019)
APHA. (2005). Standard Methods for the Examination of Water and Wastewater. In American Public Health Association. Washington,DC
Banks, C. J., Zhang, Y., Jiang, Y., & Heaven, S. (2012). Trace element requirements for stable food waste digestion at elevated ammonia concentrations. Bioresource Technology, 104, 127–135.
DOI 10.1016/j.biortech.2011.10.068
Boulanger, A., Pinet, E., Bouix, M., Bouchez, T., & Mansour, A. A. (2012). Effect of inoculum to substrate ratio (I/S) on municipal solid waste anaerobic degradation kinetics and potential. Waste Management, 32(12), 2258–2265.
DOI 10.1016/j.wasman.2012.07.024
Capson-Tojo, G, Rouez, M., Crest, M., Trably, E., Steyer, J.-P., Delgenès, J.-P., & Escudié, R. (2017). Optimization of urban food waste valorization : cardboard as suitable co-substrate for dry anaerobic co-digestion. The 15th World Congress on Anaerobic Digestion, (October)
Capson-Tojo, Gabriel, Trably, E., Rouez, M., Crest, M., Steyer, J. P., Delgenès, J. P., & Escudié, R. (2017). Dry anaerobic digestion of food waste and cardboard at different substrate loads, solid contents and co-digestion proportions. Bioresource Technology, 233, 166–175.
DOI 10.1016/j.biortech.2017.02.126
Dhamodharan, K., Kumar, V., & Kalamdhad, A. S. (2015). Effect of different livestock dungs as inoculum on food waste anaerobic digestion and its kinetics. Bioresource Technology, 180, 237–241.
DOI 10.1016/j.biortech.2014.12.066
H. M. El-Mashad, J. A. McGarvey, & R. Zhang. (2008). Performance and Microbial Analysis of Anaerobic Digesters Treating Food Waste and Dairy Manure. Biological Engineering, 1(3), 233–242.
DOI 10.13031/2013.25332
Hobbs, S. R., Landis, A. E., Rittmann, B. E., Young, M. N., & Parameswaran, P. (2018). Enhancing anaerobic digestion of food waste through biochemical methane potential assays at different substrate: inoculum ratios. Waste Management, 71, 612–617.
DOI 10.1016/j.wasman.2017.06.029
Huete, E., de Gracia, M., Ayesa, E., & Garcia-Heras, J. L. (2006). ADM1-based methodology for the characterisation of the influent sludge in anaerobic reactors. Water Science and Technology, 54(4), 157–166.
DOI 10.2166/wst.2006.537
Kawai, M., Nagao, N., Tajima, N., Niwa, C., Matsuyama, T., & Toda, T. (2014). The effect of the labile organic fraction in food waste and the substrate/inoculum ratio on anaerobic digestion for a reliable methane yield. Bioresource Technology, 157, 174–180.
DOI 10.1016/j.biortech.2014.01.018
Komilis, D., Barrena, R., Grando, R. L., Vogiatzi, V., Sánchez, A., & Font, X. (2017). A state of the art literature review on anaerobic digestion of food waste: influential operating parameters on methane yield. Reviews in Environmental Science and Biotechnology, 16(2), 347–360.
DOI 10.1007/s11157-017-9428-z
Li, Y., Jin, Y., Borrion, A., & Li, J. (2018). Influence of feed/inoculum ratios and waste cooking oil content on the mesophilic anaerobic digestion of food waste. Waste Management, 73, 156–164.
DOI 10.1016/j.wasman.2017.12.027
Lin, C. S. K., Pfaltzgraff, L. A., Herrero-Davila, L., Mubofu, E. B., Abderrahim, S., Clark, J. H., … Luque, R. (2013). Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy and Environmental Science, 6(2), 426–464.
DOI 10.1039/c2ee23440h
Liu, G., Zhang, R., El-Mashad, H. M., & Dong, R. (2009). Effect of feed to inoculum ratios on biogas yields of food and green wastes. Bioresource Technology, 100(21), 5103–5108.
DOI 10.1016/j.biortech.2009.03.081
Lohani, Sunil P., & Havukainen, J. (2018). Anaerobic Digestion: Factors Affecting Anaerobic Digestion Process. 343–359.
DOI 10.1007/978-981-10-7413-4_18
Lohani, Sunil Prasad, Wang, S., Lackner, S., Horn, H., Khanal, S. N., & Bakke, R. (2016). ADM1 modeling of UASB treating domestic wastewater in Nepal. Renewable Energy, 95, 263–268.
DOI 10.1016/j.renene.2016.04.014
Morales-polo, C., Cledera, M., & Soria, B. Y. M. (2018). Reviewing the Anaerobic Digestion of Food Waste : From Waste Generation and Anaerobic Process to Its Perspectives.
DOI 10.3390/app8101804
Okoro-Shekwaga, C. K., Turnell Suruagy, M. V., Ross, A., & Camargo-Valero, M. A. (2020). Particle size, inoculum-to-substrate ratio and nutrient media effects on biomethane yield from food waste. Renewable Energy, 151, 311–321.
DOI 10.1016/j.renene.2019.11.028
Posmanik, R., Labatut, R. A., Kim, A. H., Usack, J. G., Tester, J. W., & Angenent, L. T. (2017). Coupling hydrothermal liquefaction and anaerobic digestion for energy valorization from model biomass feedstocks. Bioresource Technology, 233, 134–143.
DOI 10.1016/j.biortech.2017.02.095
Rafieenia, R., Pivato, A., & Lavagnolo, M. C. (2018). Effect of inoculum pre-treatment on mesophilic hydrogen and methane production from food waste using two-stage anaerobic digestion. International Journal of Hydrogen Energy, 43(27), 12013–12022.
DOI 10.1016/j.ijhydene.2018.04.170
Sawatdeenarunat, C., Surendra, K. C., Takara, D., Oechsner, H., & Khanal, S. K. (2015). Anaerobic digestion of lignocellulosic biomass: Challenges and opportunities. In Bioresource Technology (Vol. 178).
DOI 10.1016/j.biortech.2014.09.103
Xia, A., Cheng, J., & Murphy, J. D. (2016). Innovation in biological production and upgrading of methane and hydrogen for use as gaseous transport biofuel. Biotechnology Advances, 34(5), 451–472.
DOI 10.1016/j.biotechadv.2015.12.009
Xu, F., & Li, Y. (2017). Anaerobic digestion of food waste - Challenges and opportunities Bioresource Technology Anaerobic digestion of food waste – Challenges and opportunities. Bioresource Technology, 247(December), 1047–1058.
DOI 10.1016/j.biortech.2017.09.020
Zamanzadeh, M., Hagen, L. H., Svensson, K., Linjordet, R., & Horn, S. J. (2017). Biogas production from food waste via co-digestion and digestion- effects on performance and microbial ecology. Scientific Reports, 7(1), 1–12.
DOI 10.1038/s41598-017-15784-w
Zhang, C., Su, H., Baeyens, J., & Tan, T. (2014). Reviewing the anaerobic digestion of food waste for biogas production. Renewable and Sustainable Energy Reviews, 38, 383–392.
DOI 10.1016/j.rser.2014.05.038
Zhang, C., Xiao, G., Peng, L., Su, H., & Tan, T. (2013). The anaerobic co-digestion of food waste and cattle manure. Bioresource Technology, 129, 170–176.
DOI 10.1016/j.biortech.2012.10.138
Zhang, J., Wang, Q., Zheng, P., & Wang, Y. (2014). Anaerobic digestion of food waste stabilized by lime mud from papermaking process. Bioresource Technology, 170, 270–277.
DOI 10.1016/j.biortech.2014.08.003
Zhang, W., Li, L., Xing, W., Chen, B., Zhang, L., Li, A., … Yang, T. (2019). Dynamic behaviors of batch anaerobic systems of food waste for methane production under different organic loads, substrate to inoculum ratios and initial pH. Journal of Bioscience and Bioengineering, 128(6), 733–743.
DOI 10.1016/j.jbiosc.2019.05.013
Ana Maria Rodrigues Costa de Castro, Lea Loretta Zentgraf, Cézar D. Luquine Jr., Ribka Metaferia and Daniel Juan Sivizaca Conde
Published 05 Oct 2020Tomoko Okayama, Kohei Watanabe and Hajime Yamakawa
Published 05 Oct 2020Luca Preite, Giovanni Paolo Carlo Tancredi, Arianna Paini and Giuseppe Vignali
Published 05 Oct 2020Title | Support | Price |
---|