Released under CC BY-NC-ND
Copyright: © 2019 CISA Publisher
Ahmed, I.N., Sutanto, S., Huynh, L.H., Ismadji, S., Ju, Y.H., 2013. Subcritical water and dilute acid pretreatments for bioethanol production from Melaleuca leucadendron shedding bark. Biochem. Eng. J. 78, 44–52.
DOI 10.1016/j.bej.2013.03.008
Al-Dulaimi, A.A., Rohaizu, R., Wanrosli, W.D., 2015. Production of nanocrystalline cellulose from an empty fruit bunches using sulfuric acid hydrolysis: Effect of reaction time on the molecular characteristics. J. Phys. Conf. Ser. 622.
DOI 10.1088/1742-6596/622/1/012047
Almeida, J.R., Modig, T., Petersson, A., Hahn-Hagerdal, B., Liden, G., Gorwa-Grauslund, M.F., 2007. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. Chem. Technol. Biotechnol. Biotechnol. 349, 340–349.
DOI 10.1002/jctb
ASTM, 2011. Standard test method for chemical analysis of wood charcoal. ASTM Int. 84, 1–2.
DOI 10.1520/D1762-84R07.2
Badger, P., 2002. Ethanol from cellulose: a general review, in: Janick, J., Whipkey, A. (Eds.), Trends in New Crops and New Uses. ASHS Press, Alexandria, VS, pp. 17–21
Boehm, H.P., Diehl, E., Heck, W., Sappok, R., 1964. Surface Oxides of Carbon 3
Casey, E., Sedlak, M., Ho, N.W.Y., Mosier, N.S., 2013. Effect of salts on the cofermentation of glucose and xylose by a genetically engineered strain of Saccharomyces cerevisiae. Biotechnol. Biofuels 6, 1–10.
DOI 10.1111/j.1567-1364.2010.00623.x
Daroch, M., Geng, S., Wang, G., 2013. Recent advances in liquid biofuel production from algal feedstocks. Appl. Energy.
DOI 10.1016/j.apenergy.2012.07.031
Douglas, C.C., Cooney, C.L., 1986. A novel fermentation: the production of R(-)-1,2-propanediol and acetol by Clostridium thermosaccharolyticum. Nat. Biotechnol. 4, 651–654.
DOI 10.1038/nbt0786-651
Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F., 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356
Dyah, M., Meinita, N., 2012. Comparison of sulfuric and hydrochloric acids as catalysts in hydrolysis of Kappaphycus alvarezii ( cottonii ). Bioprocess Biosyst. Eng. 35, 123–128.
DOI 10.1007/s00449-011-0609-9
Dyah, M., Meinita, N., Marhaeni, B., Winanto, T., Setyaningsih, D., Hong, Y., 2014. Catalytic efficiency of sulfuric and hydrochloric acids for the hydrolysis of Gelidium latifolium (Gelidiales Rhodophyta) in bioethanol production. J. Ind. Eng. Chem.
DOI 10.1016/j.jiec.2014.12.024
Ergun, M., Ferda Mutlu, S., 2000. Application of a statistical technique to the production of ethanol from sugar beet molasses by Saccharomyces cerevisiae. Bioresour. Technol. 73, 251–255.
DOI 10.1016/S0960-8524(99)00140-6
Fan, L., Moreshwar, M., Lee, Y.-H., 1987. Acid hydrolysis of cellulose, in: Cellulose Hydrolysis. Springer Berlin Heidelberg, pp. 121–148.
DOI 10.1007/978-3-642-72575-3_4
FAO, 2015. FAO Global Aquaculture Production statistics database updated to 2013: Summary information. Food Agric. Oraganization United Nations 2013.
DOI I4899E./1/08.15
Hang, Y.D., 1989. Direct fermentation of corn to L(+)-lactic acid by Rhizopus oryzae. Biotechnol. Lett. 11, 299–300.
DOI 10.1007/BF01031581
Kanchanalai, P., Temani, G., Kawajiri, Y., 2016. Reaction kinetics of concentrated-acid hydrolysis for cellulose and hemicellulose and effect of crystallinity. BioResources 11, 1672–1689.
DOI 1930-2126
Kostas, E.T., Wilkinson, S.J., White, D.A., Cook, D.J., 2016. Optimization of a total acid hydrolysis based protocol for the quantification of carbohydrate in macroalgae. J. Algal Biomass Util. 7, 21–36
Kumar, P., Barrett, D.M., Delwiche, M.J., Stroeve, P., 2009. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 48, 3713–3729.
DOI 10.1021/ie801542g
Kumar, S., Gupta, R., Kumar, G., Sahoo, D., Kuhad, R.C., 2013. Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach. Bioresour. Technol. 135, 150–156.
DOI 10.1016/j.biortech.2012.10.120
Lhonneur, J.-P., 1992. Process for the production of kappa carrageenans
Li, Q., Yang, M., Wang, D., Li, W., Wu, Y., Zhang, Y., Xing, J., Su, Z., 2010. Efficient conversion of crop stalk wastes into succinic acid production by Actinobacillus succinogenes. Bioresour. Technol. 101, 3292–3294.
DOI 10.1016/j.biortech.2009.12.064
Lokman, I.M., Rashid, U., Taufiq-Yap, Y.H., 2016. Meso- and macroporous sulfonated starch solid acid catalyst for esterification of palm fatty acid distillate. Arab. J. Chem. 9, 179–189.
DOI 10.1016/j.arabjc.2015.06.034
Lokman, I.M., Rashid, U., Taufiq-Yap, Y.H., Yunus, R., 2015. Methyl ester production from palm fatty acid distillate using sulfonated glucose-derived acid catalyst. Renew. Energy 81, 347–354.
DOI 10.1016/j.renene.2015.03.045
Manuhara, G.J., Praseptiangga, D., Riyanto, R.A., 2016. Extraction and characterization of refined K-carrageenan of red Algae [Kappaphycus Alvarezii (Doty ex P.C. Silva, 1996)] originated from Karimun Jawa Islands. Aquat. Procedia 7, 106–111.
DOI 10.1016/j.aqpro.2016.07.014
Maria Dyah Nur Meinita, Marhaeni, B., Jeong, G.-T., Hong, Y.-K., 2010. Seaweed bioethanol production: its potentials and challenges, in: Marine Bioenergy: Trends and Developments. pp. 245–256
Masarin, F., Cedeno, F.R.P., Chavez, E.G.S., de Oliveira, L.E., Gelli, V.C., Monti, R., 2016. Chemical analysis and biorefinery of red algae Kappaphycus alvarezii for efficient production of glucose from residue of carrageenan extraction process. Biotechnol. Biofuels 9, 122.
DOI 10.1186/s13068-016-0535-9
Matsuda, K., Kageyama, B., 1982. Production of 2-Keto-l-Gulonic acid from fermentation. Appl. Environ. Microbiol. 43, 1064–1069.
DOI 0099-2240/82/051064-06$02.00/0
Maxim, L.D., Niebo, R., McConnell, E.E., 2014. Perlite toxicology and epidemiology-a review. Inhal. Toxicol 26, 259–270.
DOI 10.3109/08958378.2014.881940
Meinita, M.D.N., Kang, J.Y., Jeong, G.T., Koo, H.M., Park, S.M., Hong, Y.K., 2012. Bioethanol production from the acid hydrolysate of the carrageenophyte Kappaphycus alvarezii (cottonii). J. Appl. Phycol. 24, 857–862.
DOI 10.1007/s10811-011-9705-0
Meinita, M.D.N., Marhaeni, B., Winanto, T., Jeong, G.T., Khan, M.N.A., Hong, Y.K., 2013. Comparison of agarophytes (Gelidium, Gracilaria, and Gracilariopsis) as potential resources for bioethanol production. J. Appl. Phycol. 25, 1957–1961.
DOI 10.1007/s10811-013-0041-4
Miller, G.L., 1959. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 31, 426–428.
DOI 10.1021/ac60147a030
Nobleza, J.S., 2013. Value chain analysis for seaweeds in Bohol, Cebu and Guimaras
O’Sullivan, A.C., 1997. Cellulose: the structure slowly unravels. Cellulose 4, 173–207.
DOI 10.1023/A:1018431705579
Okino, S., Noburyu, R., Suda, M., Jojima, T., Inui, M., Yukawa, H., 2008. An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Appl. Microbiol. Biotechnol. 81, 459–464.
DOI 10.1007/s00253-008-1668-y
Philippine Bureau of Investments, 2011. The Philippine seaweeds industry [WWW Document]
Rhein-Knudsen, N., Ale, M.T., Meyer, A.S., 2015. Seaweed hydrocolloid production: an update on enzyme assisted extraction and modification technologies. Mar. Drugs.
DOI 10.3390/md13063340
Rinaldi, R., Schüth, F., 2009. Acid hydrolysis of cellulose as the entry point into biorefinery schemes. ChemSusChem 2, 1096–1107.
DOI 10.1002/cssc.200900188
Samar, M., Saxena, Shweta, P.., 2016. Study of chemical and physical properties of perlite and its application in India. Int. J. Sci. Technol. Manag. 5, 70–80
Sluiter, A., Ruiz, R., Scarlata, C., Templeton, D., 2008. Determination of extractives in biomass, Technical Report NREL/TP-510-42619. Golden.
DOI NREL/TP-510-42621
Sluiter et al, 2008. Determination of ash in biomass, National Renewable Energy Laboratory. Golden.
DOI NREL/TP-510-42622
Stanley, N., 1987. Production, properties and uses of carrageenan, in: McHugh, D.J. (Ed.), Production and Utilization of Products from Commercial Seaweed. Food, and Agriculture Organization
Suganuma, S., Nakajima, K., Kitano, M., Yamaguchi, D., Kato, H., Hayashi, S., Hara, M., 2010. Synthesis and acid catalysis of cellulose-derived carbon-based solid acid. Solid State Sci. 12, 1029–1034.
DOI 10.1016/j.solidstatesciences.2010.02.038
Tan, I.S., Lee, K.T., 2015. Solid acid catalysts pretreatment and enzymatic hydrolysis of macroalgae cellulosic residue for the production of bioethanol. Carbohydr. Polym. 124, 311–321.
DOI 10.1016/j.carbpol.2015.02.046
Tan, I.S., Lee, K.T., 2014. Enzymatic hydrolysis and fermentation of seaweed solid wastes for bioethanol production: An optimization study. Energy 78, 53–62.
DOI 10.1016/j.energy.2014.04.080
Trivedi, N., Gupta, V., Reddy, C.R.K., Jha, B., 2013. Enzymatic hydrolysis and production of bioethanol from common macrophytic green alga Ulva fasciata Delile. Bioresour. Technol. 150, 106–112.
DOI 10.1016/j.biortech.2013.09.103
Woishnis, W.A., Ebnesajjad, S., 2012. Chemical resistance of thermoplastics. CRC Press
Yu, X., Zheng, Y., Dorgan, K.M., Chen, S., 2011. Bioresource Technology Oil production by oleaginous yeasts using the hydrolysate from pretreatment of wheat straw with dilute sulfuric acid. Bioresour. Technol. 102, 6134–6140.
DOI 10.1016/j.biortech.2011.02.081
Zhang, X., Zhang, Y.P., 2013. Cellulases: characteristics, sources, production and application, in: Yang, S.-T., El-Enshassy, H.A., Thongchul, N. (Eds.), Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers. John Wiley & Sons Inc., pp. 131–146.
DOI 10.1002/9781118642047.ch8
Zheng, P., Dong, J.J., Sun, Z.H., Ni, Y., Fang, L., 2009. Fermentative production of succinic acid from straw hydrolysate by Actinobacillus succinogenes. Bioresour. Technol. 100, 2425–2429.
DOI 10.1016/j.biortech.2008.11.043
Title | Support | Price |
---|