an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU


  • Jelian Grace L. Gontiñas - Department of Chemical Engineering, University of San Carlos, Philippines
  • Luis K. Cabatingan - Department of Chemical Engineering, University of San Carlos, Philippines
  • Yi-Hsu Ju - Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taiwan
  • Alchris W. Go - Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taiwan - Department of Chemical Engineering, University of San Carlos, Philippines - Visiting Foreign Researcher, National Taiwan University of Science and Technology, Taiwan - Visiting Foreign Researcher, National Taiwan University of Science and Technology, Taiwan
  • Mary Alfil A. Curayag - Department of Chemical Engineering, University of San Carlos, Philippines
  • Jenearly Z. Baloro - Department of Chemical Engineering, University of San Carlos, Philippines

Released under CC BY-NC-ND

Copyright: © 2019 CISA Publisher


Wastes generated from carrageenan processing industry include cellulosic filter cakes (CFC) which are mainly composed of structural sugar (0.25 w/w) and ash (0.75 w/w, primarily perlite). This study investigated the possible valorization of CFC by recovering the available sugars as glucose through direct acid hydrolysis. Five different sulfuric acid concentrations (5% v/v to 15% v/v) were used as catalyst for hydrolysis done at constant temperature and solvent-to-solid ratio of 95°C and 8 mL/g, respectively, over a reaction time of 5 to 300 minutes, to determine the effect of acid concentration on the hydrolysis yield. The maximum sugar yield achieved was only ~0.06 w/w, corresponding to a recovery of ~24%, for hydrolysis done with 10% v/v sulfuric acid for 120 minutes. Although the amount of sugar recovered was relatively low, hydrolysates obtained have a sugar concentration of ~7 g/L, a level considered adequate for substrates in some fermentation processes. In addition, none of the inhibitory compound, 5-hydroxymethylfurfural, was present in the hydrolysate. Drying of residual solids obtained after hydrolysis was found to result in the sulfonation of the remaining organic fraction, producing a sulfonated residue (with total acid density of 4 to 7 mmol H+/g) which may be used as solid acid catalyst. 


Editorial History

  • Received: 14 Jan 2019
  • Accepted: 17 Jun 2019
  • Available online: 28 Jun 2019


Ahmed, I.N., Sutanto, S., Huynh, L.H., Ismadji, S., Ju, Y.H., 2013. Subcritical water and dilute acid pretreatments for bioethanol production from Melaleuca leucadendron shedding bark. Biochem. Eng. J. 78, 44–52.
DOI 10.1016/j.bej.2013.03.008

Al-Dulaimi, A.A., Rohaizu, R., Wanrosli, W.D., 2015. Production of nanocrystalline cellulose from an empty fruit bunches using sulfuric acid hydrolysis: Effect of reaction time on the molecular characteristics. J. Phys. Conf. Ser. 622.
DOI 10.1088/1742-6596/622/1/012047

Almeida, J.R., Modig, T., Petersson, A., Hahn-Hagerdal, B., Liden, G., Gorwa-Grauslund, M.F., 2007. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. Chem. Technol. Biotechnol. Biotechnol. 349, 340–349.
DOI 10.1002/jctb

ASTM, 2011. Standard test method for chemical analysis of wood charcoal. ASTM Int. 84, 1–2.
DOI 10.1520/D1762-84R07.2

Badger, P., 2002. Ethanol from cellulose: a general review, in: Janick, J., Whipkey, A. (Eds.), Trends in New Crops and New Uses. ASHS Press, Alexandria, VS, pp. 17–21

Boehm, H.P., Diehl, E., Heck, W., Sappok, R., 1964. Surface Oxides of Carbon 3

Casey, E., Sedlak, M., Ho, N.W.Y., Mosier, N.S., 2013. Effect of salts on the cofermentation of glucose and xylose by a genetically engineered strain of Saccharomyces cerevisiae. Biotechnol. Biofuels 6, 1–10.
DOI 10.1111/j.1567-1364.2010.00623.x

Daroch, M., Geng, S., Wang, G., 2013. Recent advances in liquid biofuel production from algal feedstocks. Appl. Energy.
DOI 10.1016/j.apenergy.2012.07.031

Douglas, C.C., Cooney, C.L., 1986. A novel fermentation: the production of R(-)-1,2-propanediol and acetol by Clostridium thermosaccharolyticum. Nat. Biotechnol. 4, 651–654.
DOI 10.1038/nbt0786-651

Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F., 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356

Dyah, M., Meinita, N., 2012. Comparison of sulfuric and hydrochloric acids as catalysts in hydrolysis of Kappaphycus alvarezii ( cottonii ). Bioprocess Biosyst. Eng. 35, 123–128.
DOI 10.1007/s00449-011-0609-9

Dyah, M., Meinita, N., Marhaeni, B., Winanto, T., Setyaningsih, D., Hong, Y., 2014. Catalytic efficiency of sulfuric and hydrochloric acids for the hydrolysis of Gelidium latifolium (Gelidiales Rhodophyta) in bioethanol production. J. Ind. Eng. Chem.
DOI 10.1016/j.jiec.2014.12.024

Ergun, M., Ferda Mutlu, S., 2000. Application of a statistical technique to the production of ethanol from sugar beet molasses by Saccharomyces cerevisiae. Bioresour. Technol. 73, 251–255.
DOI 10.1016/S0960-8524(99)00140-6

Fan, L., Moreshwar, M., Lee, Y.-H., 1987. Acid hydrolysis of cellulose, in: Cellulose Hydrolysis. Springer Berlin Heidelberg, pp. 121–148.
DOI 10.1007/978-3-642-72575-3_4

FAO, 2015. FAO Global Aquaculture Production statistics database updated to 2013: Summary information. Food Agric. Oraganization United Nations 2013.
DOI I4899E./1/08.15

Hang, Y.D., 1989. Direct fermentation of corn to L(+)-lactic acid by Rhizopus oryzae. Biotechnol. Lett. 11, 299–300.
DOI 10.1007/BF01031581

Kanchanalai, P., Temani, G., Kawajiri, Y., 2016. Reaction kinetics of concentrated-acid hydrolysis for cellulose and hemicellulose and effect of crystallinity. BioResources 11, 1672–1689.
DOI 1930-2126

Kostas, E.T., Wilkinson, S.J., White, D.A., Cook, D.J., 2016. Optimization of a total acid hydrolysis based protocol for the quantification of carbohydrate in macroalgae. J. Algal Biomass Util. 7, 21–36

Kumar, P., Barrett, D.M., Delwiche, M.J., Stroeve, P., 2009. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 48, 3713–3729.
DOI 10.1021/ie801542g

Kumar, S., Gupta, R., Kumar, G., Sahoo, D., Kuhad, R.C., 2013. Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach. Bioresour. Technol. 135, 150–156.
DOI 10.1016/j.biortech.2012.10.120

Lhonneur, J.-P., 1992. Process for the production of kappa carrageenans

Li, Q., Yang, M., Wang, D., Li, W., Wu, Y., Zhang, Y., Xing, J., Su, Z., 2010. Efficient conversion of crop stalk wastes into succinic acid production by Actinobacillus succinogenes. Bioresour. Technol. 101, 3292–3294.
DOI 10.1016/j.biortech.2009.12.064

Lokman, I.M., Rashid, U., Taufiq-Yap, Y.H., 2016. Meso- and macroporous sulfonated starch solid acid catalyst for esterification of palm fatty acid distillate. Arab. J. Chem. 9, 179–189.
DOI 10.1016/j.arabjc.2015.06.034

Lokman, I.M., Rashid, U., Taufiq-Yap, Y.H., Yunus, R., 2015. Methyl ester production from palm fatty acid distillate using sulfonated glucose-derived acid catalyst. Renew. Energy 81, 347–354.
DOI 10.1016/j.renene.2015.03.045

Manuhara, G.J., Praseptiangga, D., Riyanto, R.A., 2016. Extraction and characterization of refined K-carrageenan of red Algae [Kappaphycus Alvarezii (Doty ex P.C. Silva, 1996)] originated from Karimun Jawa Islands. Aquat. Procedia 7, 106–111.
DOI 10.1016/j.aqpro.2016.07.014

Maria Dyah Nur Meinita, Marhaeni, B., Jeong, G.-T., Hong, Y.-K., 2010. Seaweed bioethanol production: its potentials and challenges, in: Marine Bioenergy: Trends and Developments. pp. 245–256

Masarin, F., Cedeno, F.R.P., Chavez, E.G.S., de Oliveira, L.E., Gelli, V.C., Monti, R., 2016. Chemical analysis and biorefinery of red algae Kappaphycus alvarezii for efficient production of glucose from residue of carrageenan extraction process. Biotechnol. Biofuels 9, 122.
DOI 10.1186/s13068-016-0535-9

Matsuda, K., Kageyama, B., 1982. Production of 2-Keto-l-Gulonic acid from fermentation. Appl. Environ. Microbiol. 43, 1064–1069.
DOI 0099-2240/82/051064-06$02.00/0

Maxim, L.D., Niebo, R., McConnell, E.E., 2014. Perlite toxicology and epidemiology-a review. Inhal. Toxicol 26, 259–270.
DOI 10.3109/08958378.2014.881940

Meinita, M.D.N., Kang, J.Y., Jeong, G.T., Koo, H.M., Park, S.M., Hong, Y.K., 2012. Bioethanol production from the acid hydrolysate of the carrageenophyte Kappaphycus alvarezii (cottonii). J. Appl. Phycol. 24, 857–862.
DOI 10.1007/s10811-011-9705-0

Meinita, M.D.N., Marhaeni, B., Winanto, T., Jeong, G.T., Khan, M.N.A., Hong, Y.K., 2013. Comparison of agarophytes (Gelidium, Gracilaria, and Gracilariopsis) as potential resources for bioethanol production. J. Appl. Phycol. 25, 1957–1961.
DOI 10.1007/s10811-013-0041-4

Miller, G.L., 1959. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 31, 426–428.
DOI 10.1021/ac60147a030

Nobleza, J.S., 2013. Value chain analysis for seaweeds in Bohol, Cebu and Guimaras

O’Sullivan, A.C., 1997. Cellulose: the structure slowly unravels. Cellulose 4, 173–207.
DOI 10.1023/A:1018431705579

Okino, S., Noburyu, R., Suda, M., Jojima, T., Inui, M., Yukawa, H., 2008. An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Appl. Microbiol. Biotechnol. 81, 459–464.
DOI 10.1007/s00253-008-1668-y

Philippine Bureau of Investments, 2011. The Philippine seaweeds industry [WWW Document]

Rhein-Knudsen, N., Ale, M.T., Meyer, A.S., 2015. Seaweed hydrocolloid production: an update on enzyme assisted extraction and modification technologies. Mar. Drugs.
DOI 10.3390/md13063340

Rinaldi, R., Schüth, F., 2009. Acid hydrolysis of cellulose as the entry point into biorefinery schemes. ChemSusChem 2, 1096–1107.
DOI 10.1002/cssc.200900188

Samar, M., Saxena, Shweta, P.., 2016. Study of chemical and physical properties of perlite and its application in India. Int. J. Sci. Technol. Manag. 5, 70–80

Sluiter, A., Ruiz, R., Scarlata, C., Templeton, D., 2008. Determination of extractives in biomass, Technical Report NREL/TP-510-42619. Golden.
DOI NREL/TP-510-42621

Sluiter et al, 2008. Determination of ash in biomass, National Renewable Energy Laboratory. Golden.
DOI NREL/TP-510-42622

Stanley, N., 1987. Production, properties and uses of carrageenan, in: McHugh, D.J. (Ed.), Production and Utilization of Products from Commercial Seaweed. Food, and Agriculture Organization

Suganuma, S., Nakajima, K., Kitano, M., Yamaguchi, D., Kato, H., Hayashi, S., Hara, M., 2010. Synthesis and acid catalysis of cellulose-derived carbon-based solid acid. Solid State Sci. 12, 1029–1034.
DOI 10.1016/j.solidstatesciences.2010.02.038

Tan, I.S., Lee, K.T., 2015. Solid acid catalysts pretreatment and enzymatic hydrolysis of macroalgae cellulosic residue for the production of bioethanol. Carbohydr. Polym. 124, 311–321.
DOI 10.1016/j.carbpol.2015.02.046

Tan, I.S., Lee, K.T., 2014. Enzymatic hydrolysis and fermentation of seaweed solid wastes for bioethanol production: An optimization study. Energy 78, 53–62.
DOI 10.1016/

Trivedi, N., Gupta, V., Reddy, C.R.K., Jha, B., 2013. Enzymatic hydrolysis and production of bioethanol from common macrophytic green alga Ulva fasciata Delile. Bioresour. Technol. 150, 106–112.
DOI 10.1016/j.biortech.2013.09.103

Woishnis, W.A., Ebnesajjad, S., 2012. Chemical resistance of thermoplastics. CRC Press

Yu, X., Zheng, Y., Dorgan, K.M., Chen, S., 2011. Bioresource Technology Oil production by oleaginous yeasts using the hydrolysate from pretreatment of wheat straw with dilute sulfuric acid. Bioresour. Technol. 102, 6134–6140.
DOI 10.1016/j.biortech.2011.02.081

Zhang, X., Zhang, Y.P., 2013. Cellulases: characteristics, sources, production and application, in: Yang, S.-T., El-Enshassy, H.A., Thongchul, N. (Eds.), Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers. John Wiley & Sons Inc., pp. 131–146.
DOI 10.1002/9781118642047.ch8

Zheng, P., Dong, J.J., Sun, Z.H., Ni, Y., Fang, L., 2009. Fermentative production of succinic acid from straw hydrolysate by Actinobacillus succinogenes. Bioresour. Technol. 100, 2425–2429.
DOI 10.1016/j.biortech.2008.11.043