an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU

A SUSTAINABLE APPROACH TO RECYCLING WASTE: EXAMPLES OF THE APPLICATION OF 3D PRINTING TO EXTEND THE LIFE CYCLE OF MATERIALS

  • Daniela Fico - Italian National Council of Research, CNR-ISPC, Institute of Heritage Sciences, Italy
  • Daniela Rizzo - Department of Cultural Heritage, University of Salento, Italy
  • Fabiola Malinconico - Department of Cultural Heritage, University of Salento, Italy
  • Carola Esposito Corcione - Department of Engineering Innovation, University of Salento, Italy

Access restricted to subscribed members only

Released under All rights reserved

Copyright: © 2024 CISA Publisher


Abstract

The environmental questions emerged in recent decades have caused a transition from a linear economy to a circular economy (CE). CE is based on the reuse of materials in subsequent production cycles by extending their useful life, with the aim of reducing and if possible, eliminating any waste. Fused Filament Fabrication (FFF), a 3D printing technique, has emerged in recent years as a promising methodology for green and sustainable purposes. The use of natural and biocompostable materials for the production of filaments for FFF, such as poly(lactic acid) (PLA), has made this 3D printing technique one of the most promising in several fields. This paper presents some applications concerning the development of innovative and sustainable materials focused on reducing the environmental impact of conventional FFF materials, carried out in recent years in our laboratories. In particular, various composite filaments incorporating poly(lactic acid) (PLA) and different handicraft or agro-industrial waste materials, including olive wood waste (OW), cocoa bean shell waste (CBSW), ceramic waste (CW) and Lecce stone waste (LSW), have been produced by extrusion. A comprehensive analysis was conducted on the innovative biocomposites developed, including structural, morphological, thermal and mechanical evaluations, and the comparison of the results obtained with the different subproducts is presented in the paper. Finally, some simple real objects first reproduced manually, were later 3D printed using the developed biocomposite filaments, demonstrating the effectiveness of FFF in successfully recycling artisanal and agro-industrial waste within the same production company, reducing costs and supporting the CE.

Keywords


Editorial History

  • Received: 28 May 2024
  • Revised: 24 Jul 2024
  • Accepted: 26 Jul 2024
  • Available online: 07 Sep 2024

References

Algarni, M., & Ghazali, S. (2021). Comparative study of the sensitivity of pla, abs, peek, and petg’s mechanical properties to fdm printing process parameters. Crystals, 11(8).
DOI 10.3390/cryst11080995

Bryś, A., Bryś, J., Ostrowska-Ligęza, E., Kaleta, A., Górnicki, K., Głowacki, S., & Koczoń, P. (2016). Wood biomass characterization by DSC or FT-IR spectroscopy. Journal of Thermal Analysis and Calorimetry, 126(1), 27–35.
DOI 10.1007/s10973-016-5713-2

Carichino, S., Scalferna, D., Fico, D., Rizzo, D., Ferrari, F., Jordá-Reolid, M., Martínez-García, A., & Esposito Corcione, C. (2023). Poly-Lactic Acid-Bagasse Based Bio-Composite for Additive Manufacturing. Polymers, 15, 4323.

Corcione, C. E., Gervaso, F., Scalera, F., Montagna, F., Maiullaro, T., Sannino, A., & Maffezzoli, A. (2017). 3D printing of hydroxyapatite polymer-based composites for bone tissue engineering. Journal of Polymer Engineering, 37(8), 741–746.
DOI 10.1515/polyeng-2016-0194

Corcione, C. E., Striani, R., Ferrari, F., Visconti, P., Rizzo, D., & Greco, A. (2020). An innovative method for the recycling of waste carbohydrate-based flours. Polymers, 12(6).
DOI 10.3390/polym12061414

Das, A. K., Agar, D. A., Rudolfsson, M., & Larsson, S. H. (2021). A review on wood powders in 3D printing: processes, properties and potential applications. Journal of Materials Research and Technology, 15, 241–255.
DOI 10.1016/j.jmrt.2021.07.110

Esposito Corcione, C., Gervaso, F., Scalera, F., Padmanabhan, S. K., Madaghiele, M., Montagna, F., Sannino, A., Licciulli, A., & Maffezzoli, A. (2019). Highly loaded hydroxyapatite microsphere/ PLA porous scaffolds obtained by fused deposition modelling. Ceramics International, 45(2), 2803–2810.
DOI 10.1016/j.ceramint.2018.07.297

Esposito Corcione, C., Palumbo, E., Masciullo, A., Montagna, F., & Torricelli, M. C. (2018). Fused Deposition Modeling (FDM): An innovative technique aimed at reusing Lecce stone waste for industrial design and building applications. Construction and Building Materials, 158, 276–284.
DOI 10.1016/j.conbuildmat.2017.10.011

Esposito Corcione, C., Scalera, F., Gervaso, F., Montagna, F., Sannino, A., & Maffezzoli, A. (2018). One-step solvent-free process for the fabrication of high loaded PLA/HA composite filament for 3D printing. Journal of Thermal Analysis and Calorimetry, 134(1), 575–582.
DOI 10.1007/s10973-018-7155-5

Ferrari, F., Corcione, C. E., Montagna, F., & Maffezzoli, A. (2020). 3D printing of polymer waste for improving people’s awareness about marine litter. Polymers, 12(8).
DOI 10.3390/polym12081738

Ferrari, F., Striani, R., Fico, D., Alam, M. M., Greco, A., & Esposito Corcione, C. (2022). An Overview on Wood Waste Valorization as Biopolymers and Biocomposites: Definition, Classification, Production, Properties and Applications. Polymers, 14, 5519.

Fico, D., Esposito Corcione, C., Acocella, M. R., Rizzo, D., De Carolis, V., & Maffezzoli, A. (2023). Thermal stabilization of recycled PLA for 3D printing by addition of charcoal. Journal of Thermal Analysis and Calorimetry, 148(23), 13107–13119.
DOI 10.1007/s10973-023-12525-2

Fico, D., Rizzo, D., Casciaro, R., & Esposito Corcione, C. (2022). A Review of Polymer-Based Materials for Fused Filament Fabrication (FFF): Focus on Sustainability and Recycled Materials. Polymers, 14, 465.

Fico, D., Rizzo, D., De Carolis, V., & Esposito Corcione, C. (2024). Bio-Composite Filaments Based on Poly(Lactic Acid) and Cocoa Bean Shell Waste for Fused Filament Fabrication (FFF): Production, Characterization and 3D Printing. Materials, 17(6).
DOI 10.3390/ma17061260

Fico, D., Rizzo, D., De Carolis, V., Montagna, F., & Esposito Corcione, C. (2022). Sustainable Materials and Technologies Sustainable polymer composites manufacturing through 3D printing technologies by using recycled polymer and filler. Polymers, 14, 3756.

Fico, D., Rizzo, D., De Carolis, V., Montagna, F., Palumbo, E., & Corcione, C. E. (2022). Development and characterization of sustainable PLA/Olive wood waste composites for rehabilitation applications using Fused Filament Fabrication (FFF). Journal of Building Engineering, 56(May), 104673.
DOI 10.1016/j.jobe.2022.104673

Ghisellini, P., Cialani, C., & Ulgiati, S. (2016). A review on circular economy: The expected transition to a balanced interplay of environmental and economic systems. Journal of Cleaner Production, 114, 11–32.
DOI 10.1016/j.jclepro.2015.09.007

Kariz, M., Sernek, M., & Kuzman, M. K. (2018). Effect of humidity on 3D-printed specimens from wood-pla filaments. Wood Research, 63(5), 917–922

Kariz, M., Sernek, M., Obućina, M., & Kuzman, M. K. (2018). Effect of wood content in FDM filament on properties of 3D printed parts. Materials Today Communications, 14, 135–140.
DOI 10.1016/j.mtcomm.2017.12.016

Kirchherr, J., Reike, D., & Hekkert, M. (2017). Conceptualizing the circular economy: An analysis of 114 definitions. Resources, Conservation and Recycling, 127(April), 221–232.
DOI 10.1016/j.resconrec.2017.09.005

Le Guen, M. J., Hill, S., Smith, D., Theobald, B., Gaugler, E., Barakat, A., & Mayer-Laigle, C. (2019). Influence of Rice Husk and Wood Biomass Properties on the Manufacture of Filaments for Fused Deposition Modeling. Frontiers in Chemistry, 7(October), 15–20.
DOI 10.3389/fchem.2019.00735

Leonard, J., & Berrio, V. (2021). Desarrollo y caracterización de un material compuesto con fibra de cacao para la producción de filamento para impresión 3D. https://repositorio.uniandes.edu.co/handle/1992/54342

Lionetto, F., & Esposito Corcione, C. (2021). Recent applications of biopolymers derived from fish industry waste in food packaging. Polymers, 13(14).
DOI 10.3390/polym13142337

Mikula, K., Skrzypczak, D., Izydorczyk, G., Warchoł, J., Moustakas, K., Chojnacka, K., & Witek-Krowiak, A. (2021). 3D printing filament as a second life of waste plastics—a review. Environmental Science and Pollution Research, 28(10), 12321–12333.
DOI 10.1007/s11356-020-10657-8

Puglia, D., Dominici, F., Badalotti, M., Santulli, C., & Kenny, J. M. (2016). Tensile, thermal and morphological characterization of cocoa bean shells (CBS)/polycaprolactone-based composites. Journal of Renewable Materials, 4(3), 199–205.
DOI 10.7569/JRM.2016.634102

Rajendran Royan, N. R., Leong, J. S., Chan, W. N., Tan, J. R., & Shamsuddin, Z. S. B. (2021). Current state and challenges of natural fibre-reinforced polymer composites as feeder in fdm-based 3d printing. Polymers, 13(14).
DOI 10.3390/polym13142289

Rett, J. P., Traore, Y. L., & Ho, E. A. (2021). Sustainable Materials for Fused Deposition Modeling 3D Printing Applications. Advanced Engineering Materials, 23(7), 1–8.
DOI 10.1002/adem.202001472

Rizzo, D., Fico, D., Montagna, F., Casciaro, R., & Esposito Corcione, C. (2023). From Virtual Reconstruction to Additive Manufacturing: Application of Advanced Technologies for the Integration of a 17th-Century Wooden Ciborium. Materials, 16, 1424.

Rothon, R. N. (2003). Particulate-Filled Polymer Composites. Second Edition. In Rapra Technology Limited (Issue August)

Sanyang, M. L., Sapuan, S. M., & Haron, M. (2017). Effect of cocoa pod husk filler loading on tensile properties of cocoa pod husk/polylactic acid green biocomposite films. AIP Conference Proceedings, 1891.
DOI 10.1063/1.5005459

Tao, Y., Wang, H., Li, Z., Li, P., & Shi, S. Q. (2017). Development and application ofwood flour-filled polylactic acid composite filament for 3d printing. Materials, 10(4), 1–6.
DOI 10.3390/ma10040339

Tran, T. N., Bayer, I. S., Heredia-Guerrero, J. A., Frugone, M., Lagomarsino, M., Maggio, F., & Athanassiou, A. (2017). Cocoa Shell Waste Biofilaments for 3D Printing Applications. Macromolecular Materials and Engineering, 302(11), 1–10.
DOI 10.1002/mame.201700219

Tsujiyama, S. I., & Miyamori, A. (2000). Assignment of DSC thermograms of wood and its components. Thermochimica Acta, 351(1–2), 177–181.
DOI 10.1016/S0040-6031(00)00429-9

Vásquez-Garay, F., Carrillo-Varela, I., Vidal, C., Reyes-Contreras, P., Faccini, M., & Mendonça, R. T. (2021). A review on the lignin biopolymer and its integration in the elaboration of sustainable materials. Sustainability (Switzerland), 13(5), 1–15.
DOI 10.3390/su13052697

Vyavahare, S., Teraiya, S., Panghal, D., & Kumar, S. (2020). Fused deposition modelling: a review. Rapid Prototyping Journal, 26(1), 176–201.
DOI 10.1108/RPJ-04-2019-0106

Xie, G., Zhang, Y., & Lin, W. (2017). Plasticizer combinations and performance of wood flour-poly(lactic acid) 3D printing filaments. BioResources, 12(3), 6736–6748.
DOI 10.15376/biores.12.3.6736-6748

Xu, W., Wang, X., Sandler, N., Willför, S., & Xu, C. (2018). Three-Dimensional Printing of Wood-Derived Biopolymers: A Review Focused on Biomedical Applications. ACS Sustainable Chemistry and Engineering, 6(5), 5663–5680.
DOI 10.1021/acssuschemeng.7b03924