Released under All rights reserved
Copyright: © 2024 CISA Publisher
Algarni, M., & Ghazali, S. (2021). Comparative study of the sensitivity of pla, abs, peek, and petg’s mechanical properties to fdm printing process parameters. Crystals, 11(8).
DOI 10.3390/cryst11080995
Bryś, A., Bryś, J., Ostrowska-Ligęza, E., Kaleta, A., Górnicki, K., Głowacki, S., & Koczoń, P. (2016). Wood biomass characterization by DSC or FT-IR spectroscopy. Journal of Thermal Analysis and Calorimetry, 126(1), 27–35.
DOI 10.1007/s10973-016-5713-2
Carichino, S., Scalferna, D., Fico, D., Rizzo, D., Ferrari, F., Jordá-Reolid, M., Martínez-García, A., & Esposito Corcione, C. (2023). Poly-Lactic Acid-Bagasse Based Bio-Composite for Additive Manufacturing. Polymers, 15, 4323.
Corcione, C. E., Gervaso, F., Scalera, F., Montagna, F., Maiullaro, T., Sannino, A., & Maffezzoli, A. (2017). 3D printing of hydroxyapatite polymer-based composites for bone tissue engineering. Journal of Polymer Engineering, 37(8), 741–746.
DOI 10.1515/polyeng-2016-0194
Corcione, C. E., Striani, R., Ferrari, F., Visconti, P., Rizzo, D., & Greco, A. (2020). An innovative method for the recycling of waste carbohydrate-based flours. Polymers, 12(6).
DOI 10.3390/polym12061414
Das, A. K., Agar, D. A., Rudolfsson, M., & Larsson, S. H. (2021). A review on wood powders in 3D printing: processes, properties and potential applications. Journal of Materials Research and Technology, 15, 241–255.
DOI 10.1016/j.jmrt.2021.07.110
Esposito Corcione, C., Gervaso, F., Scalera, F., Padmanabhan, S. K., Madaghiele, M., Montagna, F., Sannino, A., Licciulli, A., & Maffezzoli, A. (2019). Highly loaded hydroxyapatite microsphere/ PLA porous scaffolds obtained by fused deposition modelling. Ceramics International, 45(2), 2803–2810.
DOI 10.1016/j.ceramint.2018.07.297
Esposito Corcione, C., Palumbo, E., Masciullo, A., Montagna, F., & Torricelli, M. C. (2018). Fused Deposition Modeling (FDM): An innovative technique aimed at reusing Lecce stone waste for industrial design and building applications. Construction and Building Materials, 158, 276–284.
DOI 10.1016/j.conbuildmat.2017.10.011
Esposito Corcione, C., Scalera, F., Gervaso, F., Montagna, F., Sannino, A., & Maffezzoli, A. (2018). One-step solvent-free process for the fabrication of high loaded PLA/HA composite filament for 3D printing. Journal of Thermal Analysis and Calorimetry, 134(1), 575–582.
DOI 10.1007/s10973-018-7155-5
Ferrari, F., Corcione, C. E., Montagna, F., & Maffezzoli, A. (2020). 3D printing of polymer waste for improving people’s awareness about marine litter. Polymers, 12(8).
DOI 10.3390/polym12081738
Ferrari, F., Striani, R., Fico, D., Alam, M. M., Greco, A., & Esposito Corcione, C. (2022). An Overview on Wood Waste Valorization as Biopolymers and Biocomposites: Definition, Classification, Production, Properties and Applications. Polymers, 14, 5519.
Fico, D., Esposito Corcione, C., Acocella, M. R., Rizzo, D., De Carolis, V., & Maffezzoli, A. (2023). Thermal stabilization of recycled PLA for 3D printing by addition of charcoal. Journal of Thermal Analysis and Calorimetry, 148(23), 13107–13119.
DOI 10.1007/s10973-023-12525-2
Fico, D., Rizzo, D., Casciaro, R., & Esposito Corcione, C. (2022). A Review of Polymer-Based Materials for Fused Filament Fabrication (FFF): Focus on Sustainability and Recycled Materials. Polymers, 14, 465.
Fico, D., Rizzo, D., De Carolis, V., & Esposito Corcione, C. (2024). Bio-Composite Filaments Based on Poly(Lactic Acid) and Cocoa Bean Shell Waste for Fused Filament Fabrication (FFF): Production, Characterization and 3D Printing. Materials, 17(6).
DOI 10.3390/ma17061260
Fico, D., Rizzo, D., De Carolis, V., Montagna, F., & Esposito Corcione, C. (2022). Sustainable Materials and Technologies Sustainable polymer composites manufacturing through 3D printing technologies by using recycled polymer and filler. Polymers, 14, 3756.
Fico, D., Rizzo, D., De Carolis, V., Montagna, F., Palumbo, E., & Corcione, C. E. (2022). Development and characterization of sustainable PLA/Olive wood waste composites for rehabilitation applications using Fused Filament Fabrication (FFF). Journal of Building Engineering, 56(May), 104673.
DOI 10.1016/j.jobe.2022.104673
Ghisellini, P., Cialani, C., & Ulgiati, S. (2016). A review on circular economy: The expected transition to a balanced interplay of environmental and economic systems. Journal of Cleaner Production, 114, 11–32.
DOI 10.1016/j.jclepro.2015.09.007
Kariz, M., Sernek, M., & Kuzman, M. K. (2018). Effect of humidity on 3D-printed specimens from wood-pla filaments. Wood Research, 63(5), 917–922
Kariz, M., Sernek, M., Obućina, M., & Kuzman, M. K. (2018). Effect of wood content in FDM filament on properties of 3D printed parts. Materials Today Communications, 14, 135–140.
DOI 10.1016/j.mtcomm.2017.12.016
Kirchherr, J., Reike, D., & Hekkert, M. (2017). Conceptualizing the circular economy: An analysis of 114 definitions. Resources, Conservation and Recycling, 127(April), 221–232.
DOI 10.1016/j.resconrec.2017.09.005
Le Guen, M. J., Hill, S., Smith, D., Theobald, B., Gaugler, E., Barakat, A., & Mayer-Laigle, C. (2019). Influence of Rice Husk and Wood Biomass Properties on the Manufacture of Filaments for Fused Deposition Modeling. Frontiers in Chemistry, 7(October), 15–20.
DOI 10.3389/fchem.2019.00735
Leonard, J., & Berrio, V. (2021). Desarrollo y caracterización de un material compuesto con fibra de cacao para la producción de filamento para impresión 3D. https://repositorio.uniandes.edu.co/handle/1992/54342
Lionetto, F., & Esposito Corcione, C. (2021). Recent applications of biopolymers derived from fish industry waste in food packaging. Polymers, 13(14).
DOI 10.3390/polym13142337
Mikula, K., Skrzypczak, D., Izydorczyk, G., Warchoł, J., Moustakas, K., Chojnacka, K., & Witek-Krowiak, A. (2021). 3D printing filament as a second life of waste plastics—a review. Environmental Science and Pollution Research, 28(10), 12321–12333.
DOI 10.1007/s11356-020-10657-8
Puglia, D., Dominici, F., Badalotti, M., Santulli, C., & Kenny, J. M. (2016). Tensile, thermal and morphological characterization of cocoa bean shells (CBS)/polycaprolactone-based composites. Journal of Renewable Materials, 4(3), 199–205.
DOI 10.7569/JRM.2016.634102
Rajendran Royan, N. R., Leong, J. S., Chan, W. N., Tan, J. R., & Shamsuddin, Z. S. B. (2021). Current state and challenges of natural fibre-reinforced polymer composites as feeder in fdm-based 3d printing. Polymers, 13(14).
DOI 10.3390/polym13142289
Rett, J. P., Traore, Y. L., & Ho, E. A. (2021). Sustainable Materials for Fused Deposition Modeling 3D Printing Applications. Advanced Engineering Materials, 23(7), 1–8.
DOI 10.1002/adem.202001472
Rizzo, D., Fico, D., Montagna, F., Casciaro, R., & Esposito Corcione, C. (2023). From Virtual Reconstruction to Additive Manufacturing: Application of Advanced Technologies for the Integration of a 17th-Century Wooden Ciborium. Materials, 16, 1424.
Rothon, R. N. (2003). Particulate-Filled Polymer Composites. Second Edition. In Rapra Technology Limited (Issue August)
Sanyang, M. L., Sapuan, S. M., & Haron, M. (2017). Effect of cocoa pod husk filler loading on tensile properties of cocoa pod husk/polylactic acid green biocomposite films. AIP Conference Proceedings, 1891.
DOI 10.1063/1.5005459
Tao, Y., Wang, H., Li, Z., Li, P., & Shi, S. Q. (2017). Development and application ofwood flour-filled polylactic acid composite filament for 3d printing. Materials, 10(4), 1–6.
DOI 10.3390/ma10040339
Tran, T. N., Bayer, I. S., Heredia-Guerrero, J. A., Frugone, M., Lagomarsino, M., Maggio, F., & Athanassiou, A. (2017). Cocoa Shell Waste Biofilaments for 3D Printing Applications. Macromolecular Materials and Engineering, 302(11), 1–10.
DOI 10.1002/mame.201700219
Tsujiyama, S. I., & Miyamori, A. (2000). Assignment of DSC thermograms of wood and its components. Thermochimica Acta, 351(1–2), 177–181.
DOI 10.1016/S0040-6031(00)00429-9
Vásquez-Garay, F., Carrillo-Varela, I., Vidal, C., Reyes-Contreras, P., Faccini, M., & Mendonça, R. T. (2021). A review on the lignin biopolymer and its integration in the elaboration of sustainable materials. Sustainability (Switzerland), 13(5), 1–15.
DOI 10.3390/su13052697
Vyavahare, S., Teraiya, S., Panghal, D., & Kumar, S. (2020). Fused deposition modelling: a review. Rapid Prototyping Journal, 26(1), 176–201.
DOI 10.1108/RPJ-04-2019-0106
Xie, G., Zhang, Y., & Lin, W. (2017). Plasticizer combinations and performance of wood flour-poly(lactic acid) 3D printing filaments. BioResources, 12(3), 6736–6748.
DOI 10.15376/biores.12.3.6736-6748
Xu, W., Wang, X., Sandler, N., Willför, S., & Xu, C. (2018). Three-Dimensional Printing of Wood-Derived Biopolymers: A Review Focused on Biomedical Applications. ACS Sustainable Chemistry and Engineering, 6(5), 5663–5680.
DOI 10.1021/acssuschemeng.7b03924
Pedro Melo Rodrigues and Joaquim Esteves da Silva
Published 07 Sep 2024Ian D. Williams, Toby J. Roberts, Lina Maria Zapata-Restrepo, Maria Neophytou, Angelos Ktoris, Androniki Maragkidou and Jukka-Pekka Jalkanen
Published 07 Sep 2024Lina Maria Zapata-Restrepo, Ian D. Williams, Malcolm Hudson, Georgia Freeman, Bronwyn Lee and Clement Prieul
Published 07 Sep 2024Title | Support | Price |
---|