Released under CC BY-NC-ND
Copyright: © 2022 CISA Publisher
ASTM D5321/D5321M, 2017. Standard Test Method for Determining the Shear Strength of Soil-Geosynthetic and Geosynthetic-Geosynthetic Interfaces by Direct Shear
ASTM D7702/D7702M, 2021. Standard Guide for Considerations When Evaluating Direct Shear Results Involving Geosynthetics
Atkinson, J. H., and Farrar, D. M.,1985. Stress path tests to measure soil strength parameters for shallow landslips. Proc., 11th Int. Conf. on Soil Mech. and Found. Eng., Golden Jubilee Volume, Taylor and Francis, London, Vol. 2, pp. 983– 986
Bacas, B.M., Cañizal, J., Konietzky, H., 2015. Shear strength behavior of geotextile/geomembrane interfaces. Journal of Rock Mechanics and Geotechnical Engineering, Vol. 7 , pp. 638-645
Baker, R., 2004. Non-linear strength envelopes based on triaxial test data. J. Geotech. Geoenv. Eng., Vol. 130 (5), pp. 498- 506
Bishop, A. W., Webb, D. L., and Lewin, P. I. , 1965. Undisturbed samples of London clay from the Ashford common shaft: strength-effective normal stress relationship. Géotechnique, Vol. 15 (1), pp. 1-31
BS EN 1997-1, 2004. Eurocode 7: Geotechnical design - Part 1:General Rules
BS EN 1998-5, 2004.Eurocode 8. Design of structures for earthquake resistance -Part 5: Foundations, retaining structures and geotechnical aspects
Cazzuffi, D., Recalcati, P., 2018. Recent developments on the use of drainage geocomposites in capping systems, Detritus. Multidisciplinary Journal for Waste Resources & Residues, CISA Publisher, Vol. 3, pp. 93-99
Das, B. M.,1990. Principles of Geotechnical Engineering, 2nd edition, PWS-Kent, Boston
Dixon, N., Jones, D. R. V., Fowmes, G. J., 2006. Interface shear strength variability and its use in reliability-based landfill stability analysis. Geosynthetics International, Vol 13, No. 1, pp. 1–14
Day, R. W., and Maksimovic, M., 1994. Stability of compacted clay slopes using a nonlinear failure envelope. Bulletin of the Assoc. of Eng. Geologists, Vol. 31 (4), pp. 516-520
Duncan, J.M., Brandon, T.L., VandenBerge, D.R., 2011. Report of the workshop on shear strength for stability of slopes in highly plastic clays, CGPR #67. Center for Geotechnical Practice and Research, Blacksburg
EN ISO 12957-1, 2018. Geosynthetics - Determination of friction characteristics - Part 1: Direct Shear Test. European Committee for Standardization, CEN, Brussels, Belgium
EN ISO 12957-2, 2005. Geosynthetics - Determination of friction characteristics - Part 2: Inclined plane test. European Committee for Standardization, CEN, Brussels, Belgium
Gamez, J.A., Stark, T.D., 2014. Fully softened shear strength at low stresses for levee and embankment design. J Geotech Geoenviron Eng, Vol. 140:1–6
Grossule, V., Stegmann, R., 2020. Problems in traditional landfilling and proposals for solutions based on sustainability. Detritus, Vol. 12, pp. 78–91.
DOI 10.31025/2611-4135/2020.14000
Holtz, W. G., and Gibbs, H. J., 1956. Shear strength of pervious gravelly soils. J. Soil. Mech. Found. Div., Vol. 82 (SM 1), pp. 1-22
Koerner, R. M., Koerner, G. R., 2007. Interpretation(s) of Laboratory Generated Interface Shear Strength Data. GRI White Paper #11,Geosynthetic Research Institute, p. 8
Koerner, G.R., Narejo, D., 2005. Direct Shear Database of Geosynthetic-to-Geosynthetic and Geosynthetic-to-Soil Interfaces. GRI Report #30, p. 112
Lancellotta, R. 1995. Geotechnical Engineering. CRC Press. Pp. 448
Lefebvre, G.,1981. Strength and slope stability in Canadian soft clay deposits. Can. Geotech. J., Vol.18 (3), pp. 420-442
Maksimovic, M., 1989. Nonlinear failure envelope for soils. J. Geotech.Geoenv. Eng., Vol. 115 (4), pp. 581-586
Mesri ,G., Shahien, M., 2003. Residual shear strength mobilized in first-time slope failures. J Geotech Geoenviron Eng, Vol. 129, pp. 12–31
Marsland, A., 1971. The shear strength of stiff fissured clays. Proc., Roscoe Memorial Symp., Cambridge University, Cambridge, England, pp. 59-68
Moraci, N., Cardile, G., Gioffrè, D., Mandaglio, M.C., Calvarano, L.S., Carbone, 2014. Soil geosynthetic interaction: design parameters from experimental and theoretical analysis. Transportation Infrastructure Geotechnology Vol.1, n. 2, pp.165-227, Ed. Springer
Noor, M.J.M., Hadi, B.A., 2010. The role of curved-surface envelope Mohr–Coulomb model in governing shallow infiltration induced slope failure. Electron J Geotech Eng, Vol. 15, pp.1–21
Penman, A.,1953. Shear characteristics of saturated silts measured in triaxial compression. Géotechnique, Vol 3 (8), pp.312-328
Ponce, V. M., and Bell, J. M., 1971. Shear strength of sand at extremely low pressures. J. Soil Mech. Found. Div., Vol. 97 (SM4), 625-637
Stark, T. D., Choi, H., 2003. Peak versus residual interface strengths for landfill liner and cover design, Geosynthetics. Harbin Inst. Technol. 46
Terzaghi, K, Peck, R.B., Mesri, G., 1996. Soil mechanics in engineering practice, 3rd edn. Wiley, New York
Vesic, A. S., and Clough, G. W., 1968. Behaviour of granular materials under high stresses. J. Soil Mech. Found. Div., Vol. 94 (SM3), pp. 661-688
Wright, S.G., 2005. Evaluation of soil shear strengths for slope and retaining wall stability analyses with emphasis on high plasticity clays. Center for Transportation Research, University of Texas at Austin
Marina Rigillo, Enrico Formato and Michelangelo Russo
Published 30 Sep 2022Title | Support | Price |
---|