an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU


  • Agata Gallipoli - Water Research Institute National Research Council, Italy
  • Andrea Gianico - Water Research Institute National Research Council, Italy
  • Simona Crognale - Water Research Institute National Research Council, Italy
  • Simona Rossetti - Water Research Institute, National Research Council, Italy
  • Leone Mazzeo - Department of Engineering, University Campus Biomedico of Rome, Italy
  • Vincenzo Piemonte - Department of Engineering, University Campus Biomedico of Rome, Italy
  • Maurizio Masi - Department of Chemistry, Materials & Chemical Engineering, Polytechnic University of Milan, Italy
  • Camilla Maria Braguglia - Water Research Institute National Research Council, Italy

Released under CC BY-NC-ND

Copyright: © 2021 CISA Publisher


This innovative Biorefinery platform is based on the integration of a mild thermal pre-treatment and a solid/liquid separation unit to parallel-integrated bioprocesses specifically selected on food waste distinctive chemical composition: a liquid fraction, rich in readily fermentable sugars, to be transformed into valuable biobased products, and a solid organic residue to enhance biomethane production generating a fully hygienized digestate to be recycled. The preliminary results in terms of VFAs yields and composition from the acidogenic stage, and the methane conversion rate from the anaerobic digestion of the solid residue, are here presented


Editorial History

  • Received: 03 Feb 2021
  • Revised: 22 Apr 2021
  • Accepted: 30 Apr 2021
  • Available online: 30 Jun 2021


Agler, M.T., Wrenn, B.A., Zinder, S.H., & Angenent L.T., 2011. Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform. Trends in Biotechnology 29, 70–78.
DOI 10.1016/j.tibtech.2010.11.006

Alibardi, L., Astrup, T.F., Asunis, F., Clarke, W.P., de Gioannis, G., et al., 2020. Organic waste biorefineries: Looking towards implementation. Waste Management 114, 274-286

APHA, (1998). Standard Methods for the Examination of Water and Wastewater, twentieth ed., Washington DC

Ariunbaatar J., Panico, A.,Yeh, D.H., Pirozzi,F., Lens, P.N., & Esposito, G., 2015. Enhanced mesophilic anaerobic digestion of food waste by thermal pretreatment: Substrate versus digestate heating. Waste Management 46,176–181

Arslan, D., Steinbusch, K.J.J., Diels, L., Hamelers, H.V.M., Strik, D.P.B.T.B., Buisman, C.J.N., & De Wever, H., 2016. Selective short-chain carboxylates production: A review of control mechanisms to direct mixed culture fermentations. Critical Reviews in Environmental Science and Technology 46(6), 592-634

Braguglia, C.M., Gagliano, C., & Rossetti, S., 2012. High frequency ultrasound pretreatment for sludge anaerobic digestion: Effect on floc structure and microbial population. Bioresource Technology 110, 43–49

Braguglia, C.M., Gallipoli, A., Gianico, A., & Pagliaccia, P., 2018. Anaerobic bioconversion of food waste into energy: A critical review. Bioresource Technology 248, 37-56.
DOI 10.1016/j.biortech.2017.06.145

Capson-Tojo, G., Rouez, M., Crest, M., Steyer, J.-P., Delgenes, J.-P., and Escudie, R., 2016. Food waste valorization via anaerobic processes: a review. Rev. Environ. Science and Bio/Technol. 15(3), 499-547

Carrere, H., Antonopoulou, G., Affes, R., Passos, F., Battimelli, A., Lyberatos, G., Ferrer, I. 2016. Review of feedstock pretreatment strategies for improved anaerobic digestion: from lab-scale research to full-scale application. Bioresour. Technol. 199, 386–397

Cesaro, A., Belgiorno, V., 2020. Ozone pretreatment for the anaerobic digestion of organic solid waste. Detritus 12, 51-56.
DOI 10.31025/2611-4135/2020.13990Coma, M., Martinez-Hernandez, E., Abeln, F., Raikova, S., Donnelly, J., Arnot, T. C., Allen, M.J., Hong, D.D., & Chuck, C.J., 2017. Organic waste as a sustainable feedstock for platform chemicals. Faraday Discussions 202, 175–

Crognale, S., Braguglia, CM., Gallipoli, A., Gianico, A., Rossetti, S. and Montecchio, D., 2021. Direct Conversion of Food Waste Extract into Caproate: Metagenomics Assessment of Chain Elongation Process. Microorganisms 9(2), 327;
DOI 10.3390/microorganisms9020327Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., & Smith, F., 1956. Colorimetric method for determination of sugars and related substances, Analytical Chemistry 28, 350–356

Eurostat (2020). Renewable energy in the EU in 2018. News Release 17.

Gagliano, M.C., Braguglia, C.M., Gallipoli, A., Gainico, A., Rossetti, S., 2015. Microbial diversity in innovative mesophilic/thermophilic temperature-phased anaerobic digestion of sludge. Environmental Science and Pollutution Research 22, 7339–7348

Gallipoli, A., Braguglia, C.M., Gianico, A., Montecchio, D., Pagliaccia, P., 2020. Kitchen waste valorization through a mild-temperature pretreatment to enhance biogas production and fermentability: kinetics study in mesophilic and thermophilic regimen. J. Environ. Sci. 89, 167–179

Gianico, A., Braguglia, C.M., Cesarini, R., & Mininni, G., 2013. Reduced temperature hydrolysis at 134°C before thermophilic anaerobic digestion of waste activated sludge at increasing organic load. Bioresource Technology 143, 96-103

Kannengiesser, J., Kuhn, C., Mrukwia, T., Stanojkovski, D., Jager, J., Schebek, L., 2018. Generation of bio-based products from omsw by using a solid-liquid separation technique and an anaerobic treatment, Detritus. 4, 78-89

Kleerebezem, R., & Van Loosdrecht, M.C.M., 2007. Mixed culture biotechnology for bioenergy production. Current Opinion in Biotechnology 18, 207–212

Kleerebezem, R., Joosse, B., Rozendal, R., & Van Loosdrecht, M.C.M., 2015. Anaerobic digestion without biogas? Reviews in Environmental Science and Biotechnology 14, 787–801

Lee, W.S., Chua, A.S.M., Yeoh, H.K. & Ngoh, G.C., 2014. A review of the production and applications of waste-derived volatile fatty acids. Chemical Engineering Journal 235, 83-99

Loow, Y. L., Wu, T. Y., Jahim, J. M., Mohammad, A. W., & Teoh, W. H., 2016. “Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment,” Cellulose 23(3), 1491-1520.
DOI 10.1007/s10570-016-0936-8

Marshall, C.W., LaBelle, E.V., & May, H.D., 2013. Production of fuels and chemicals from waste by microbiomes. Current Opinion in Biotechnology 24(3), 391-397

Montecchio, D., Gallipoli, A., Gianico, A., Mininni, G., Pagliaccia, P. & Braguglia, C.M., 2017. Biomethane potential of food waste: modeling the effects of mild thermal pretreatment and digestion temperature. Environmental Technology 38(11), 1452-1464

Morgan-Sagastume, F., Pratt, S., Karlsson, A., Cirne, D., Lant, P., & Werker, A., 2011. Production of volatile fatty acids by fermentation of waste activated sludge pre-treated in full-scale thermal hydrolysis plants. Bioresource Technology 102(3), 3089-3097

Pagliaccia P., Gallipoli, A., Gianico, A., Montecchio, D., & Braguglia, C.M., 2016. Single stage anaerobic bioconversion of food waste in mono and co-digestion with olive husks: Impact of thermal pretreatment on hydrogen and methane production. International Journal of Hydrogen Energy 41(2), 905-915.
DOI 10.1016/j.ijhydene.2015.10.061

Pagliaccia, P., Gallipoli, A., Gianico, A., Gironi, F., Montecchio, D., Pastore, C., di Bitonto, L., & Braguglia, C.M., 2019. Variability of food waste chemical composition: Impact of thermal pretreatment on lignocellulosic matrix and anaerobic biodegradability. Journal of Environmental Management 236, 100-107

Pecorini, I., Baldi, F., Carnevale, E.A., & Corti, A., 2016. Biochemical methane potential tests of different autoclaved and microwaved lignocellulosic organic fractions of municipal solid waste. Waste Management 56, 143-150

Pfaltzgraff, L.A., De Bruyn, M., Cooper, E.C., Budarin, V., & Clark, J.H., 2013. Food waste biomass: A resource for high-value chemicals. Green Chemistry 15, 307–314

Romero-Cedillo L., Poggi-Varaldo H.M., Ponce-Noyola T., Ríos-Leal E., Ramos-Valdivia A.C., Cerda-García Rojas C.M., & Tapia-Ramírez J., 2017. A review of the potential of pretreated solids to improve gas biofuels production in the context of an OFMSW refinery. Journal of Chemical Technology and Biotechnology 92, 937-958

Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, M.D., Fujimoto, E.K., Goeke, N.M., Olson, B.J., Klenk ,D.C., 1985. Measurement of protein using bicinchoninic acid. Analytical Biochemistry 150(1), 76-85

Steinbush K. J. J., Hamelers, H. V. M., Plugge, C. M., & Buisman, C. J. N., 2011. Biological formation of caproate and caprylate from acetate: fuel and chemical production from low grade biomass. Energy & Environmental Science 4, 216–224.
DOI 10.1039/C0EE00282H

Tonanzi, B., Gallipoli, A., Gianico, A., Montecchio D., Pagliaccia, P., Di Carlo, M., Rossetti, S., & Braguglia, C.M., 2018. Long-term anaerobic digestion of food waste at semi-pilot scale: Relationship between microbial community structure and process performances. Biomass and Bioenergy 118, 55–64.
DOI 10.1016/j.biombioe.2018.08.001

Tonanzi, B., Braguglia, C.M., Gallipoli, A., Montecchio, D., Pagliaccia, P., Rossetti, S., Gianico, A., 2020. Anaerobic digestion of mixed urban biowaste: The microbial community shift towards stability. New Biotechnology 55, 108-117.
DOI 10.1016/j.nbt.2019.10.008

Valentino, F., Moretto, G., Gottardo, M., Pavan, P., Bolzonella, D., & Majone, M., 2019. Novel routes for urban bio-waste management: A combined acidic fermentation and anaerobic digestion process for platform chemicals and biogas production. Journal of Cleaner Production 220, 368-375

Zacharof, M.P. & Lovitt, R.W., 2013. Complex Effluent Streams as a Potential Source of Volatile Fatty Acids. Waste and Biomass Valorization 4(3), 557-581

Zhang, Y., Banks, C.J., Heaven, S., 2012. Co-digestion of source segregated domestic food waste to improve process stability. Bioresour. Technol. 114, 168–178

Zhang D., Jiang H., Chang J., Sun J., Tu W., & Wang H., 2019. Effect of thermal hydrolysis pretreatment on volatile fatty acids production in sludge acidification and subsequent polyhydroxyalkanoates production. Bioresource Technology 279, 92-100