Released under CC BY-NC-ND
Copyright: © 2021 CISA Publisher
Agler, M.T., Wrenn, B.A., Zinder, S.H., & Angenent L.T., 2011. Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform. Trends in Biotechnology 29, 70–78.
DOI 10.1016/j.tibtech.2010.11.006
Alibardi, L., Astrup, T.F., Asunis, F., Clarke, W.P., de Gioannis, G., et al., 2020. Organic waste biorefineries: Looking towards implementation. Waste Management 114, 274-286
APHA, (1998). Standard Methods for the Examination of Water and Wastewater, twentieth ed., Washington DC
Ariunbaatar J., Panico, A.,Yeh, D.H., Pirozzi,F., Lens, P.N., & Esposito, G., 2015. Enhanced mesophilic anaerobic digestion of food waste by thermal pretreatment: Substrate versus digestate heating. Waste Management 46,176–181
Arslan, D., Steinbusch, K.J.J., Diels, L., Hamelers, H.V.M., Strik, D.P.B.T.B., Buisman, C.J.N., & De Wever, H., 2016. Selective short-chain carboxylates production: A review of control mechanisms to direct mixed culture fermentations. Critical Reviews in Environmental Science and Technology 46(6), 592-634
Braguglia, C.M., Gagliano, C., & Rossetti, S., 2012. High frequency ultrasound pretreatment for sludge anaerobic digestion: Effect on floc structure and microbial population. Bioresource Technology 110, 43–49
Braguglia, C.M., Gallipoli, A., Gianico, A., & Pagliaccia, P., 2018. Anaerobic bioconversion of food waste into energy: A critical review. Bioresource Technology 248, 37-56.
DOI 10.1016/j.biortech.2017.06.145
Capson-Tojo, G., Rouez, M., Crest, M., Steyer, J.-P., Delgenes, J.-P., and Escudie, R., 2016. Food waste valorization via anaerobic processes: a review. Rev. Environ. Science and Bio/Technol. 15(3), 499-547
Carrere, H., Antonopoulou, G., Affes, R., Passos, F., Battimelli, A., Lyberatos, G., Ferrer, I. 2016. Review of feedstock pretreatment strategies for improved anaerobic digestion: from lab-scale research to full-scale application. Bioresour. Technol. 199, 386–397
Cesaro, A., Belgiorno, V., 2020. Ozone pretreatment for the anaerobic digestion of organic solid waste. Detritus 12, 51-56.
DOI 10.31025/2611-4135/2020.13990Coma, M., Martinez-Hernandez, E., Abeln, F., Raikova, S., Donnelly, J., Arnot, T. C., Allen, M.J., Hong, D.D., & Chuck, C.J., 2017. Organic waste as a sustainable feedstock for platform chemicals. Faraday Discussions 202, 175–
Crognale, S., Braguglia, CM., Gallipoli, A., Gianico, A., Rossetti, S. and Montecchio, D., 2021. Direct Conversion of Food Waste Extract into Caproate: Metagenomics Assessment of Chain Elongation Process. Microorganisms 9(2), 327;
DOI 10.3390/microorganisms9020327Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., & Smith, F., 1956. Colorimetric method for determination of sugars and related substances, Analytical Chemistry 28, 350–356
Eurostat (2020). Renewable energy in the EU in 2018. News Release 17. https://ec.europa.eu/eurostat/documents/2995521/10335438/8-23012020-AP-EN.pdf/292cf2e5-8870-4525-7ad7-188864ba0c29
Gagliano, M.C., Braguglia, C.M., Gallipoli, A., Gainico, A., Rossetti, S., 2015. Microbial diversity in innovative mesophilic/thermophilic temperature-phased anaerobic digestion of sludge. Environmental Science and Pollutution Research 22, 7339–7348
Gallipoli, A., Braguglia, C.M., Gianico, A., Montecchio, D., Pagliaccia, P., 2020. Kitchen waste valorization through a mild-temperature pretreatment to enhance biogas production and fermentability: kinetics study in mesophilic and thermophilic regimen. J. Environ. Sci. 89, 167–179
Gianico, A., Braguglia, C.M., Cesarini, R., & Mininni, G., 2013. Reduced temperature hydrolysis at 134°C before thermophilic anaerobic digestion of waste activated sludge at increasing organic load. Bioresource Technology 143, 96-103
Kannengiesser, J., Kuhn, C., Mrukwia, T., Stanojkovski, D., Jager, J., Schebek, L., 2018. Generation of bio-based products from omsw by using a solid-liquid separation technique and an anaerobic treatment, Detritus. 4, 78-89
Kleerebezem, R., & Van Loosdrecht, M.C.M., 2007. Mixed culture biotechnology for bioenergy production. Current Opinion in Biotechnology 18, 207–212
Kleerebezem, R., Joosse, B., Rozendal, R., & Van Loosdrecht, M.C.M., 2015. Anaerobic digestion without biogas? Reviews in Environmental Science and Biotechnology 14, 787–801
Lee, W.S., Chua, A.S.M., Yeoh, H.K. & Ngoh, G.C., 2014. A review of the production and applications of waste-derived volatile fatty acids. Chemical Engineering Journal 235, 83-99
Loow, Y. L., Wu, T. Y., Jahim, J. M., Mohammad, A. W., & Teoh, W. H., 2016. “Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment,” Cellulose 23(3), 1491-1520.
DOI 10.1007/s10570-016-0936-8
Marshall, C.W., LaBelle, E.V., & May, H.D., 2013. Production of fuels and chemicals from waste by microbiomes. Current Opinion in Biotechnology 24(3), 391-397
Montecchio, D., Gallipoli, A., Gianico, A., Mininni, G., Pagliaccia, P. & Braguglia, C.M., 2017. Biomethane potential of food waste: modeling the effects of mild thermal pretreatment and digestion temperature. Environmental Technology 38(11), 1452-1464
Morgan-Sagastume, F., Pratt, S., Karlsson, A., Cirne, D., Lant, P., & Werker, A., 2011. Production of volatile fatty acids by fermentation of waste activated sludge pre-treated in full-scale thermal hydrolysis plants. Bioresource Technology 102(3), 3089-3097
Pagliaccia P., Gallipoli, A., Gianico, A., Montecchio, D., & Braguglia, C.M., 2016. Single stage anaerobic bioconversion of food waste in mono and co-digestion with olive husks: Impact of thermal pretreatment on hydrogen and methane production. International Journal of Hydrogen Energy 41(2), 905-915.
DOI 10.1016/j.ijhydene.2015.10.061
Pagliaccia, P., Gallipoli, A., Gianico, A., Gironi, F., Montecchio, D., Pastore, C., di Bitonto, L., & Braguglia, C.M., 2019. Variability of food waste chemical composition: Impact of thermal pretreatment on lignocellulosic matrix and anaerobic biodegradability. Journal of Environmental Management 236, 100-107
Pecorini, I., Baldi, F., Carnevale, E.A., & Corti, A., 2016. Biochemical methane potential tests of different autoclaved and microwaved lignocellulosic organic fractions of municipal solid waste. Waste Management 56, 143-150
Pfaltzgraff, L.A., De Bruyn, M., Cooper, E.C., Budarin, V., & Clark, J.H., 2013. Food waste biomass: A resource for high-value chemicals. Green Chemistry 15, 307–314
Romero-Cedillo L., Poggi-Varaldo H.M., Ponce-Noyola T., Ríos-Leal E., Ramos-Valdivia A.C., Cerda-García Rojas C.M., & Tapia-Ramírez J., 2017. A review of the potential of pretreated solids to improve gas biofuels production in the context of an OFMSW refinery. Journal of Chemical Technology and Biotechnology 92, 937-958
Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, M.D., Fujimoto, E.K., Goeke, N.M., Olson, B.J., Klenk ,D.C., 1985. Measurement of protein using bicinchoninic acid. Analytical Biochemistry 150(1), 76-85
Steinbush K. J. J., Hamelers, H. V. M., Plugge, C. M., & Buisman, C. J. N., 2011. Biological formation of caproate and caprylate from acetate: fuel and chemical production from low grade biomass. Energy & Environmental Science 4, 216–224.
DOI 10.1039/C0EE00282H
Tonanzi, B., Gallipoli, A., Gianico, A., Montecchio D., Pagliaccia, P., Di Carlo, M., Rossetti, S., & Braguglia, C.M., 2018. Long-term anaerobic digestion of food waste at semi-pilot scale: Relationship between microbial community structure and process performances. Biomass and Bioenergy 118, 55–64.
DOI 10.1016/j.biombioe.2018.08.001
Tonanzi, B., Braguglia, C.M., Gallipoli, A., Montecchio, D., Pagliaccia, P., Rossetti, S., Gianico, A., 2020. Anaerobic digestion of mixed urban biowaste: The microbial community shift towards stability. New Biotechnology 55, 108-117.
DOI 10.1016/j.nbt.2019.10.008
Valentino, F., Moretto, G., Gottardo, M., Pavan, P., Bolzonella, D., & Majone, M., 2019. Novel routes for urban bio-waste management: A combined acidic fermentation and anaerobic digestion process for platform chemicals and biogas production. Journal of Cleaner Production 220, 368-375
Zacharof, M.P. & Lovitt, R.W., 2013. Complex Effluent Streams as a Potential Source of Volatile Fatty Acids. Waste and Biomass Valorization 4(3), 557-581
Zhang, Y., Banks, C.J., Heaven, S., 2012. Co-digestion of source segregated domestic food waste to improve process stability. Bioresour. Technol. 114, 168–178
Zhang D., Jiang H., Chang J., Sun J., Tu W., & Wang H., 2019. Effect of thermal hydrolysis pretreatment on volatile fatty acids production in sludge acidification and subsequent polyhydroxyalkanoates production. Bioresource Technology 279, 92-100
Ana Maria Rodrigues Costa de Castro, Lea Loretta Zentgraf, Cézar D. Luquine Jr., Ribka Metaferia and Daniel Juan Sivizaca Conde
Published 30 Jun 2021Tomoko Okayama, Kohei Watanabe and Hajime Yamakawa
Published 30 Jun 2021Luca Preite, Giovanni Paolo Carlo Tancredi, Arianna Paini and Giuseppe Vignali
Published 30 Jun 2021Title | Support | Price |
---|