Released under All rights reserved
Copyright: © 2024 CISA Publisher
Abid, Y., Shuja, A., Ali, M., & Murtaza, I. (2024). Output current boosting in triboelectric nanogenerators for applications in self-powered energy systems. Engineering Science and Technology, an International Journal, 55, 101749.
DOI 10.1016/j.jestch.2024.101749
Ansori, A., Soeparman, S., Widhiyanuriyawan, D., & Widodo, T. D. (2023). Enhanced mechanical and water resistance properties of cassava starch-PVA composites with TiO2 nanofillers for triboelectric nanogenerators films. In EUREKA: Physics and Engineering (Issue 2, pp. 184–201). OU Scientific Route.
DOI 10.21303/2461-4262.2023.002647
Baburaj, A., Banerjee, S., Aliyana, A. K., Shee, C., Banakar, M., Bairagi, S., Naveen Kumar, S. K., Ali, S. W., & Stylios, G. K. (2024). Biodegradable based TENGs for self-sustaining implantable medical devices. Nano Energy, 127,
DOI 10.1016/j.nanoen.2024.109785
Bairagi, S., Ghosh, S., & Ali, S. W. (2020). A fully sustainable, self-poled, bio-waste based piezoelectric nanogenerator: electricity generation from pomelo fruit membrane. Scientific Reports, 10(1), 12121.
DOI 10.1038/s41598-020-68751-3
Chen, J., Zeng, W., Gan, J., Li, Y., Pan, Y., Li, J., & Chen, H. (2021). Physicochemical properties and anti-oxidation activities of ulvan from Ulva pertusa Kjellm. Algal Research, 55, 102269.
DOI 10.1016/J.ALGAL.2021.102269
Chen, W., Li, C., Tao, Y., Lu, J., Du, J., & Wang, H. (2024). Chitosan-based triboelectric materials for self-powered sensing at high temperatures. In International Journal of Minerals, Metallurgy and Materials (Vol. 31, Issue 11, pp. 2518–2527). Springer Science and Business Media LLC.
DOI 10.1007/s12613-024-2839-2
Ghazy, A. R., El-Sheekh, M. M., & Ghazy, R. (2024). Structure, laser scattering, optical properties, adsorption, and dye removal studies by Ulvan extracted from the green seaweed Ulva lactuca. Journal of Molecular Liquids, 410, 125567.
DOI 10.1016/j.molliq.2024.125567
Gonzales, K. N., Torres, F. G., Sanchis, M. J., & Carsí, M. (2024). Ulvan based materials doped with lithium sulfate salts as solid biopolymer electrolytes for energy storage applications. Algal Research, 78, 103401.
DOI 10.1016/j.algal.2024.103401
Guidara, M., Yaich, H., Benelhadj, S., Adjouman, Y. D., Richel, A., Blecker, C., Sindic, M., Boufi, S., Attia, H., & Garna, H. (2020). Smart ulvan films responsive to stimuli of plasticizer and extraction condition in physico-chemical, optical, barrier and mechanical properties. International Journal of Biological Macromolecules, 150, 714–726.
DOI 10.1016/J.IJBIOMAC.2020.02.111
Kang, M., Bin Mohammed Khusrin, M. S., Kim, Y.-J., Kim, B., Park, B. J., Hyun, I., Imani, I. M., Choi, B.-O., & Kim, S.-W. (2022). Nature-derived highly tribopositive ϰ-carrageenan-agar composite-based fully biodegradable triboelectric nanogenerators. Nano Energy, 100, 107480.
DOI 10.1016/j.nanoen.2022.107480
Khandelwal, G., Maria Joseph Raj, N. P., & Kim, S.-J. (2021). Materials Beyond Conventional Triboelectric Series for Fabrication and Applications of Triboelectric Nanogenerators. Advanced Energy Materials, 11(33), 2101170.
DOI 10.1002/aenm.202101170
Kidgell, J. T., Magnusson, M., de Nys, R., & Glasson, C. R. K. (2019). Ulvan: A systematic review of extraction, composition and function. Algal Research, 39, 101422.
DOI 10.1016/j.algal.2019.101422
Kraan, S. (2013). Pigments and minor compounds in algae. In H. B. T.-F. I. from A. for F. and N. Domínguez (Ed.), Functional Ingredients from Algae for Foods and Nutraceuticals (pp. 205–251). Elsevier.
DOI 10.1533/9780857098689.1.205
Lahaye, M., & Robic, A. (2007). Structure and Functional Properties of Ulvan, a Polysaccharide from Green Seaweeds. Biomacromolecules, 8(6), 1765–1774.
DOI 10.1021/bm061185q
Le, B., Golokhvast, K. S., Yang, S. H., & Sun, S. (2019). Optimization of Microwave-Assisted Extraction of Polysaccharides from Ulva pertusa and Evaluation of Their Antioxidant Activity. In Antioxidants (Vol. 8, Issue 5).
DOI 10.3390/antiox8050129
Leinemann, F., & Mabilia, V. (2019). European Union legislation and policies relevant for Algae. In Grand challenges in biology and biotechnology (pp. 577–591).
DOI 10.1007/978-3-030-25233-5_16
Li, Y., Chen, S., Yan, H., Jiang, H., Luo, J., Zhang, C., Pang, Y., & Tan, Y. (2023). Biodegradable, transparent, and antibacterial alginate-based triboelectric nanogenerator for energy harvesting and tactile sensing. Chemical Engineering Journal, 468, 143572.
DOI 10.1016/j.cej.2023.143572
Liu, L., Solin, N., & Inganäs, O. (2021). Bio Based Batteries. Advanced Energy Materials, 11(43), 2003713.
DOI 10.1002/aenm.202003713
Matloub, A. A., Salama, A. H., Aglan, H. A., AbouSamra, M. M., ElSouda, S. S. M., & Ahmed, H. H. (2018). Exploiting bilosomes for delivering bioactive polysaccharide isolated from Enteromorpha intestinalis for hacking hepatocellular carcinoma. Drug Development and Industrial Pharmacy, 44(4), 523–534.
DOI 10.1080/03639045.2017.1402922
Melchor-Martínez, E. M., Macias-Garbett, R., Malacara-Becerra, A., Iqbal, H. M. N., Sosa-Hernández, J. E., & Parra-Saldívar, R. (2021). Environmental impact of emerging contaminants from battery waste: A mini review. Case Studies in Chemical and Environmental Engineering, 3, 100104.
DOI 10.1016/j.cscee.2021.100104
Morelli, A., & Chiellini, F. (2010). Ulvan as a New Type of Biomaterial from Renewable Resources: Functionalization and Hydrogel Preparation. Macromolecular Chemistry and Physics, 211(7), 821–832.
DOI 10.1002/macp.200900562
Mrozik, W., Rajaeifar, M. A., Heidrich, O., & Christensen, P. (2021). Environmental impacts, pollution sources and pathways of spent lithium-ion batteries. Energy & Environmental Science, 14(12), 6099–6121.
DOI 10.1039/D1EE00691F
Osório, C., Machado, S., Peixoto, J., Bessada, S., Pimentel, F. B., C. Alves, R., & Oliveira, M. B. P. P. (2020). Pigments Content (Chlorophylls, Fucoxanthin and Phycobiliproteins) of Different Commercial Dried Algae. In Separations (Vol. 7, Issue 2).
DOI 10.3390/separations7020033
Pang, Y., Xi, F., Luo, J., Liu, G., Guo, T., & Zhang, C. (2018). An alginate film-based degradable triboelectric nanogenerator. RSC Advances, 8(12), 6719–6726.
DOI 10.1039/C7RA13294H
Chitin Biofilm for Sustainable Multifunctional Energy Harvesting. Advanced Sustainable Systems, 8(2), 2300312.
DOI 10.1002/adsu.202300312
Peasura, N., Laohakunjit, N., Kerdchoechuen, O., & Wanlapa, S. (2015). Characteristics and antioxidant of Ulva intestinalis sulphated polysaccharides extracted with different solvents. International Journal of Biological Macromolecules, 81, 912–919.
DOI 10.1016/j.ijbiomac.2015.09.030
Petchnui, K., Uwanno, T., Phonyiem Reilly, M., Pinming, C., Treetong, A., Yordsri, V., Moolsradoo, N., Klamcheun, A., & Wongwiriyapan, W. (2024). Preparation of Chitin Nanofibers and Natural Rubber Composites and Their Triboelectric Nanogenerator Applications. In Materials (Vol. 17, Issue 3).
DOI 10.3390/ma17030738
Rodríguez-Iglesias, P., Baltrusch, K. L., Díaz-Reinoso, B., López-Álvarez, M., Novoa-Carballal, R., González, P., González-Novoa, A., Rodríguez-Montes, A., Kennes, C., Veiga, M. C., Torres, M. D., & Domínguez, H. (2024). Hydrothermal extraction of ulvans from Ulva spp. in a biorefinery approach. The Science of the Total Environment, 951, 175654.
DOI 10.1016/j.scitotenv.2024.175654
Somseemee, O., Siriwong, K., Sae-Oui, P., Harnchana, V., Appamato, I., Prada, T., & Siriwong, C. (2024). Preparation of UV-cured cellulose nanocrystal-filled epoxidized natural rubber and its application in a triboelectric nanogenerator. In International Journal of Biological Macromolecules (Vol. 262, p. 130109). Elsevier BV.
DOI 10.1016/j.ijbiomac.2024.130109
Tabarsa, M., You, S., Dabaghian, E. H., & Surayot, U. (2018). Water-soluble polysaccharides from Ulva intestinalis : Molecular properties, structural elucidation and immunomodulatory activities. Journal of Food and Drug Analysis, 26(2), 599–608.
DOI 10.1016/j.jfda.2017.07.016
Torres, F. G., & De-la-Torre, G. E. (2022). Green algae as a sustainable source for energy generation and storage technologies. Sustainable Energy Technologies and Assessments, 53, 102658.
DOI 10.1016/j.seta.2022.102658
Torres, F. G., Troncoso, O. P., Urtecho, A., Soto, P., & Pachas, B. (2024). Recent Progress in Polysaccharide-Based Materials for Energy Applications: A Review. ACS Applied Materials & Interfaces, 55, 101749.
DOI 10.1021/acsami.4c03802
Torres, F. G., Gonzales, K. N., Troncoso, O. P., Corman-Hijar, J. I., & Cornejo, G. (2023). A Review on the Development of Biopolymer Nanocomposite-Based Triboelectric Nanogenerators (Bio-TENGs). ACS Applied Electronic Materials, 5(7), 3546–3559.
DOI 10.1021/acsaelm.3c00621
Torres, F. G., Troncoso, O. P., Urtecho, A., Soto, P., & Pachas, B. (2024). Recent Progress in Polysaccharide-Based Materials for Energy Applications: A Review. ACS Applied Materials and Interfaces .
DOI 10.1021/acsami.4c03802
Tung, D. T., Tam, L. T. T., Duong, N. T. T., Dung, H. T., Dung, N. T., Duc, N. A., Hong, P. N., Dung, N. T., Minh, P. N., & Lu, L. T. (2025). A novel polymer composite from polyhexamethylene guanidine hydrochloride for high performance triboelectric nanogenerators (TENGs). RSC Advances, 15(2), 844–850.
DOI 10.1039/d4ra07768g
Urtecho, A., Troncoso, O. P., & Torres, F. G. (2024). High-Permittivity Polymer–Matrix Composites for the Development of Triboelectric Nanogenerators (TENGs) with Enhanced Performance: A Review. Journal of Electronic Materials, 53(8), 4341–4356.
DOI 10.1007/s11664-024-11217-3
Wang, Y., Li, Z., Fu, H., & Xu, B. (2023). Sustainable triboelectric nanogenerators based on recycled materials for biomechanical energy harvesting and self-powered sensing. Nano Energy, 115, 108717.
DOI 10.1016/j.nanoen.2023.108717
Wilhelm, F. M. (2009). Pollution of Aquatic Ecosystems I. In G. E. B. T.-E. of I. W. Likens (Ed.), Encyclopedia of Inland Waters (pp. 110–119). Elsevier.
DOI 10.1016/B978-012370626-3.00222-2
Yang, Z., Zhang, X., Deng, T., & Xiang, G. (2024). Nontoxic Flexible TENG with Robust Piezoelectric Enhancement Through Graphitic Carbon Nitride-incorporated PVDF for Wearable Sensors and Power Supplies. Energy, 306, 132555.
DOI 10.1016/j.energy.2024.132555
You, S., Lee, D., Park, J., Lee, J. D., Ko, K. C., Kim, S., & Son, S. U. (2024). Chemically variable polyurethanes prepared using CO2-Derived DIOLs as promising triboelectric energy harvesting materials. ACS Applied Polymer Materials.
DOI 10.1021/acsapm.4c03025
Zhang, J., Hu, S., Shi, Z., Wang, Y., Lei, Y., Han, J., Xiong, Y., Sun, J., Zheng, L., Sun, Q., Yang, G., & Wang, Z. L. (2021). Eco-friendly and recyclable all cellulose triboelectric nanogenerator and self-powered interactive interface. Nano Energy, 89, 106354.
DOI 10.1016/j.nanoen.2021.106354
Zhao, H., Lin, J., Ren, H., Peng, H., Lou, C., & Li, T. (2024). Triboelectric Nanogenerator based on superstructure MoS2 for energy harvesting and human sensing. Chemical Engineering Journal, 159107.
DOI 10.1016/j.cej.2024.159107
Zhu, Q., Sun, E., Zhao, Z., Wu, T., Meng, S., Ma, Z., Shoaib, M., Ur Rehman, H., Cao, X., & Wang, N. (2024). Biopolymer Materials in Triboelectric Nanogenerators: A Review. Polymers, 16(10).
DOI 10.3390/polym16101304
Zou, H., Guo, L., Xue, H., Zhang, Y., Shen, X., Liu, X., Wang, P., He, X., Dai, G., Jiang, P., Zheng, H., Zhang, B., Xu, C., & Wang, Z. L. (2020a). Quantifying and understanding the triboelectric series of inorganic non-metallic materials. Nature Communications, 11(1), 2093.
DOI 10.1038/s41467-020-15926-1
Managing editor: Rainer Stegmann
Published 20 Mar 2025Managing editors: Claire Gwinett and George Varghese
Published 20 Mar 2025Krishnan Kannabiran, Arun Dhanasekaran, Kritika Tiwari, Arpita Bhange and Shankha Shubhra Ghosh
Published 20 Mar 2025Title | Support | Price |
---|