an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU

ULVAN FROM ULVA NEMATOIDEA AS A NOVEL ACTIVE SURFACE MATERIAL FOR TRIBOELECTRIC NANOGENERATORS

  • Fernando G. Torres - Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Peru
  • Adrian Urtecho - Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Peru

Access restricted to subscribed members only

Released under All rights reserved

Copyright: © 2024 CISA Publisher


Abstract

Marine algae represent an underutilized biomass resource. Biopolymers can be extracted from different types of algae. Alginates and carrageenans are among the most common biopolymers extracted from brown and red algae. They find applications in the food and biomaterials industries, among others. However, other available marine algae are not commercially exploited. For instance, green algae from the Ulvaceae family remain largely unexploited and have no industrial applications. In particular, Ulva species can serve as a promising source for the extraction of a biopolymer known as ulvan. This work reports the development of triboelectric nanogenerators (TENGs) for energy harvesting applications using ulvan extracted from the green algae Ulva nematoidea. Ulvan was extracted via an alkaline method. The extracted ulvan was dissolved in water, poured into petri dishes, and dried to form thin films. TENGs were prepared using Ulvan-Kapton® and Ulvan-Polytetrafluoroethylene (PTFE) triboelectric pairs. The Ulvan-Kapton® TENG showed a maximum voltage of 2.12 V and a short-circuit current of 1.6 µA while the Ulvan-PTFE TENG showed a maximum voltage of 43.60 V and a short-circuit current of 5.6 µA. This performance is similar to the performance of other TENGs fabricated from commercial biopolymers. This suggest that ulvan extracted from Ulva nematoidea have potential applications as active surface of TENGs for the development of sustainable energy harvesting devices. This work shows that bio-based materials from green algae can serve as a potential alternative for renewable energy generation. Further research will allow to enhance mechanical properties, electrical performance, and durability of ulvan-based TENGs to improve their practical applicability.

Keywords


Editorial History

  • Received: 14 Nov 2024
  • Revised: 11 Feb 2025
  • Accepted: 22 Feb 2025
  • Available online: 20 Mar 2025

References

Abid, Y., Shuja, A., Ali, M., & Murtaza, I. (2024). Output current boosting in triboelectric nanogenerators for applications in self-powered energy systems. Engineering Science and Technology, an International Journal, 55, 101749.
DOI 10.1016/j.jestch.2024.101749

Ansori, A., Soeparman, S., Widhiyanuriyawan, D., & Widodo, T. D. (2023). Enhanced mechanical and water resistance properties of cassava starch-PVA composites with TiO2 nanofillers for triboelectric nanogenerators films. In EUREKA: Physics and Engineering (Issue 2, pp. 184–201). OU Scientific Route.
DOI 10.21303/2461-4262.2023.002647

Baburaj, A., Banerjee, S., Aliyana, A. K., Shee, C., Banakar, M., Bairagi, S., Naveen Kumar, S. K., Ali, S. W., & Stylios, G. K. (2024). Biodegradable based TENGs for self-sustaining implantable medical devices. Nano Energy, 127,
DOI 10.1016/j.nanoen.2024.109785

Bairagi, S., Ghosh, S., & Ali, S. W. (2020). A fully sustainable, self-poled, bio-waste based piezoelectric nanogenerator: electricity generation from pomelo fruit membrane. Scientific Reports, 10(1), 12121.
DOI 10.1038/s41598-020-68751-3

Chen, J., Zeng, W., Gan, J., Li, Y., Pan, Y., Li, J., & Chen, H. (2021). Physicochemical properties and anti-oxidation activities of ulvan from Ulva pertusa Kjellm. Algal Research, 55, 102269.
DOI 10.1016/J.ALGAL.2021.102269

Chen, W., Li, C., Tao, Y., Lu, J., Du, J., & Wang, H. (2024). Chitosan-based triboelectric materials for self-powered sensing at high temperatures. In International Journal of Minerals, Metallurgy and Materials (Vol. 31, Issue 11, pp. 2518–2527). Springer Science and Business Media LLC.
DOI 10.1007/s12613-024-2839-2

Ghazy, A. R., El-Sheekh, M. M., & Ghazy, R. (2024). Structure, laser scattering, optical properties, adsorption, and dye removal studies by Ulvan extracted from the green seaweed Ulva lactuca. Journal of Molecular Liquids, 410, 125567.
DOI 10.1016/j.molliq.2024.125567

Gonzales, K. N., Torres, F. G., Sanchis, M. J., & Carsí, M. (2024). Ulvan based materials doped with lithium sulfate salts as solid biopolymer electrolytes for energy storage applications. Algal Research, 78, 103401.
DOI 10.1016/j.algal.2024.103401

Guidara, M., Yaich, H., Benelhadj, S., Adjouman, Y. D., Richel, A., Blecker, C., Sindic, M., Boufi, S., Attia, H., & Garna, H. (2020). Smart ulvan films responsive to stimuli of plasticizer and extraction condition in physico-chemical, optical, barrier and mechanical properties. International Journal of Biological Macromolecules, 150, 714–726.
DOI 10.1016/J.IJBIOMAC.2020.02.111

Kang, M., Bin Mohammed Khusrin, M. S., Kim, Y.-J., Kim, B., Park, B. J., Hyun, I., Imani, I. M., Choi, B.-O., & Kim, S.-W. (2022). Nature-derived highly tribopositive ϰ-carrageenan-agar composite-based fully biodegradable triboelectric nanogenerators. Nano Energy, 100, 107480.
DOI 10.1016/j.nanoen.2022.107480

Khandelwal, G., Maria Joseph Raj, N. P., & Kim, S.-J. (2021). Materials Beyond Conventional Triboelectric Series for Fabrication and Applications of Triboelectric Nanogenerators. Advanced Energy Materials, 11(33), 2101170.
DOI 10.1002/aenm.202101170

Kidgell, J. T., Magnusson, M., de Nys, R., & Glasson, C. R. K. (2019). Ulvan: A systematic review of extraction, composition and function. Algal Research, 39, 101422.
DOI 10.1016/j.algal.2019.101422

Kraan, S. (2013). Pigments and minor compounds in algae. In H. B. T.-F. I. from A. for F. and N. Domínguez (Ed.), Functional Ingredients from Algae for Foods and Nutraceuticals (pp. 205–251). Elsevier.
DOI 10.1533/9780857098689.1.205

Lahaye, M., & Robic, A. (2007). Structure and Functional Properties of Ulvan, a Polysaccharide from Green Seaweeds. Biomacromolecules, 8(6), 1765–1774.
DOI 10.1021/bm061185q

Le, B., Golokhvast, K. S., Yang, S. H., & Sun, S. (2019). Optimization of Microwave-Assisted Extraction of Polysaccharides from Ulva pertusa and Evaluation of Their Antioxidant Activity. In Antioxidants (Vol. 8, Issue 5).
DOI 10.3390/antiox8050129

Leinemann, F., & Mabilia, V. (2019). European Union legislation and policies relevant for Algae. In Grand challenges in biology and biotechnology (pp. 577–591).
DOI 10.1007/978-3-030-25233-5_16

Li, Y., Chen, S., Yan, H., Jiang, H., Luo, J., Zhang, C., Pang, Y., & Tan, Y. (2023). Biodegradable, transparent, and antibacterial alginate-based triboelectric nanogenerator for energy harvesting and tactile sensing. Chemical Engineering Journal, 468, 143572.
DOI 10.1016/j.cej.2023.143572

Liu, L., Solin, N., & Inganäs, O. (2021). Bio Based Batteries. Advanced Energy Materials, 11(43), 2003713.
DOI 10.1002/aenm.202003713

Matloub, A. A., Salama, A. H., Aglan, H. A., AbouSamra, M. M., ElSouda, S. S. M., & Ahmed, H. H. (2018). Exploiting bilosomes for delivering bioactive polysaccharide isolated from Enteromorpha intestinalis for hacking hepatocellular carcinoma. Drug Development and Industrial Pharmacy, 44(4), 523–534.
DOI 10.1080/03639045.2017.1402922

Melchor-Martínez, E. M., Macias-Garbett, R., Malacara-Becerra, A., Iqbal, H. M. N., Sosa-Hernández, J. E., & Parra-Saldívar, R. (2021). Environmental impact of emerging contaminants from battery waste: A mini review. Case Studies in Chemical and Environmental Engineering, 3, 100104.
DOI 10.1016/j.cscee.2021.100104

Morelli, A., & Chiellini, F. (2010). Ulvan as a New Type of Biomaterial from Renewable Resources: Functionalization and Hydrogel Preparation. Macromolecular Chemistry and Physics, 211(7), 821–832.
DOI 10.1002/macp.200900562

Mrozik, W., Rajaeifar, M. A., Heidrich, O., & Christensen, P. (2021). Environmental impacts, pollution sources and pathways of spent lithium-ion batteries. Energy & Environmental Science, 14(12), 6099–6121.
DOI 10.1039/D1EE00691F

Osório, C., Machado, S., Peixoto, J., Bessada, S., Pimentel, F. B., C. Alves, R., & Oliveira, M. B. P. P. (2020). Pigments Content (Chlorophylls, Fucoxanthin and Phycobiliproteins) of Different Commercial Dried Algae. In Separations (Vol. 7, Issue 2).
DOI 10.3390/separations7020033

Pang, Y., Xi, F., Luo, J., Liu, G., Guo, T., & Zhang, C. (2018). An alginate film-based degradable triboelectric nanogenerator. RSC Advances, 8(12), 6719–6726.
DOI 10.1039/C7RA13294H

Chitin Biofilm for Sustainable Multifunctional Energy Harvesting. Advanced Sustainable Systems, 8(2), 2300312.
DOI 10.1002/adsu.202300312

Peasura, N., Laohakunjit, N., Kerdchoechuen, O., & Wanlapa, S. (2015). Characteristics and antioxidant of Ulva intestinalis sulphated polysaccharides extracted with different solvents. International Journal of Biological Macromolecules, 81, 912–919.
DOI 10.1016/j.ijbiomac.2015.09.030

Petchnui, K., Uwanno, T., Phonyiem Reilly, M., Pinming, C., Treetong, A., Yordsri, V., Moolsradoo, N., Klamcheun, A., & Wongwiriyapan, W. (2024). Preparation of Chitin Nanofibers and Natural Rubber Composites and Their Triboelectric Nanogenerator Applications. In Materials (Vol. 17, Issue 3).
DOI 10.3390/ma17030738

Rodríguez-Iglesias, P., Baltrusch, K. L., Díaz-Reinoso, B., López-Álvarez, M., Novoa-Carballal, R., González, P., González-Novoa, A., Rodríguez-Montes, A., Kennes, C., Veiga, M. C., Torres, M. D., & Domínguez, H. (2024). Hydrothermal extraction of ulvans from Ulva spp. in a biorefinery approach. The Science of the Total Environment, 951, 175654.
DOI 10.1016/j.scitotenv.2024.175654

Somseemee, O., Siriwong, K., Sae-Oui, P., Harnchana, V., Appamato, I., Prada, T., & Siriwong, C. (2024). Preparation of UV-cured cellulose nanocrystal-filled epoxidized natural rubber and its application in a triboelectric nanogenerator. In International Journal of Biological Macromolecules (Vol. 262, p. 130109). Elsevier BV.
DOI 10.1016/j.ijbiomac.2024.130109

Tabarsa, M., You, S., Dabaghian, E. H., & Surayot, U. (2018). Water-soluble polysaccharides from Ulva intestinalis : Molecular properties, structural elucidation and immunomodulatory activities. Journal of Food and Drug Analysis, 26(2), 599–608.
DOI 10.1016/j.jfda.2017.07.016

Torres, F. G., & De-la-Torre, G. E. (2022). Green algae as a sustainable source for energy generation and storage technologies. Sustainable Energy Technologies and Assessments, 53, 102658.
DOI 10.1016/j.seta.2022.102658

Torres, F. G., Troncoso, O. P., Urtecho, A., Soto, P., & Pachas, B. (2024). Recent Progress in Polysaccharide-Based Materials for Energy Applications: A Review. ACS Applied Materials & Interfaces, 55, 101749.
DOI 10.1021/acsami.4c03802

Torres, F. G., Gonzales, K. N., Troncoso, O. P., Corman-Hijar, J. I., & Cornejo, G. (2023). A Review on the Development of Biopolymer Nanocomposite-Based Triboelectric Nanogenerators (Bio-TENGs). ACS Applied Electronic Materials, 5(7), 3546–3559.
DOI 10.1021/acsaelm.3c00621

Torres, F. G., Troncoso, O. P., Urtecho, A., Soto, P., & Pachas, B. (2024). Recent Progress in Polysaccharide-Based Materials for Energy Applications: A Review. ACS Applied Materials and Interfaces .
DOI 10.1021/acsami.4c03802

Tung, D. T., Tam, L. T. T., Duong, N. T. T., Dung, H. T., Dung, N. T., Duc, N. A., Hong, P. N., Dung, N. T., Minh, P. N., & Lu, L. T. (2025). A novel polymer composite from polyhexamethylene guanidine hydrochloride for high performance triboelectric nanogenerators (TENGs). RSC Advances, 15(2), 844–850.
DOI 10.1039/d4ra07768g

Urtecho, A., Troncoso, O. P., & Torres, F. G. (2024). High-Permittivity Polymer–Matrix Composites for the Development of Triboelectric Nanogenerators (TENGs) with Enhanced Performance: A Review. Journal of Electronic Materials, 53(8), 4341–4356.
DOI 10.1007/s11664-024-11217-3

Wang, Y., Li, Z., Fu, H., & Xu, B. (2023). Sustainable triboelectric nanogenerators based on recycled materials for biomechanical energy harvesting and self-powered sensing. Nano Energy, 115, 108717.
DOI 10.1016/j.nanoen.2023.108717

Wilhelm, F. M. (2009). Pollution of Aquatic Ecosystems I. In G. E. B. T.-E. of I. W. Likens (Ed.), Encyclopedia of Inland Waters (pp. 110–119). Elsevier.
DOI 10.1016/B978-012370626-3.00222-2

Yang, Z., Zhang, X., Deng, T., & Xiang, G. (2024). Nontoxic Flexible TENG with Robust Piezoelectric Enhancement Through Graphitic Carbon Nitride-incorporated PVDF for Wearable Sensors and Power Supplies. Energy, 306, 132555.
DOI 10.1016/j.energy.2024.132555

You, S., Lee, D., Park, J., Lee, J. D., Ko, K. C., Kim, S., & Son, S. U. (2024). Chemically variable polyurethanes prepared using CO2-Derived DIOLs as promising triboelectric energy harvesting materials. ACS Applied Polymer Materials.
DOI 10.1021/acsapm.4c03025

Zhang, J., Hu, S., Shi, Z., Wang, Y., Lei, Y., Han, J., Xiong, Y., Sun, J., Zheng, L., Sun, Q., Yang, G., & Wang, Z. L. (2021). Eco-friendly and recyclable all cellulose triboelectric nanogenerator and self-powered interactive interface. Nano Energy, 89, 106354.
DOI 10.1016/j.nanoen.2021.106354

Zhao, H., Lin, J., Ren, H., Peng, H., Lou, C., & Li, T. (2024). Triboelectric Nanogenerator based on superstructure MoS2 for energy harvesting and human sensing. Chemical Engineering Journal, 159107.
DOI 10.1016/j.cej.2024.159107

Zhu, Q., Sun, E., Zhao, Z., Wu, T., Meng, S., Ma, Z., Shoaib, M., Ur Rehman, H., Cao, X., & Wang, N. (2024). Biopolymer Materials in Triboelectric Nanogenerators: A Review. Polymers, 16(10).
DOI 10.3390/polym16101304

Zou, H., Guo, L., Xue, H., Zhang, Y., Shen, X., Liu, X., Wang, P., He, X., Dai, G., Jiang, P., Zheng, H., Zhang, B., Xu, C., & Wang, Z. L. (2020a). Quantifying and understanding the triboelectric series of inorganic non-metallic materials. Nature Communications, 11(1), 2093.
DOI 10.1038/s41467-020-15926-1