an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU

FULL-SCALE CO-COMPOSTING OF SEWAGE SLUDGE AND WASTE MATERIALS AT VARIOUS MIXING PROPORTIONS AND AERATION CONDITIONS TO PRODUCE STABILIZED COMPOST

  • Kateřina Chamrádová - Institute of Environmental Technology, CEET, VSB-Technical University of Ostrava, Czech Republic
  • Jitka Pavlíková - FCC Česká republika, s.r.o., Czech Republic
  • Panagiotis Basinas - Institute of Environmental Technology, CEET, VSB-Technical University of Ostrava, Czech Republic
  • Martina Vráblová - Institute of Environmental Technology, CEET, VSB-Technical University of Ostrava, Czech Republic
  • Kateřina Smutná - Institute of Environmental Technology, CEET, VSB-Technical University of Ostrava, Czech Republic
  • Barbora Tenklová - FCC Česká republika, s.r.o., Czech Republic
  • Jiří Rusín - Institute of Environmental Technology, CEET, VSB-Technical University of Ostrava, Czech Republic
  • Daniel Vrábl - Faculty of Science, University of Ostrava, Czech Republic
  • Ivan Koutník - Institute of Environmental Technology, CEET, VSB-Technical University of Ostrava, Czech Republic

Access restricted to subscribed members only

Released under All rights reserved

Copyright: © 2024 CISA Publisher


Abstract

Two different sewage sludge (SS) waste materials were commercially co-composted with wood chips (WCh) and grass to determine their conversion potential and elucidate the manner that it is affected by the various process operational parameters. A blend of three different SS streams composted more efficiently in terms of temperature attained during the process than a single SS stream when the materials were co-treated with WCh acting as the bulking agent. WCh facilitated the accomplishment of a temperature over the sanitation limit and concurrently the establishment of a high decomposition rate over a long period. Further increasing the fraction of WCh in the composting mixture had an insignificant effect on the decomposition rate of organics in SS. The presence of grass in a mixture had a negative influence on the composting temperature that retained below the sanitization limits during the entire process. Aeration led to an increment in temperature but in all cases the enhancement remained at levels lower than 20 °C throughout the trials. Concentration of heavy metals in all mixtures was sufficiently reduced with composting regardless of the SS type, mixing ratio, the use of a secondary organic substrate and aeration.

Keywords


Editorial History

  • Received: 15 Nov 2024
  • Revised: 03 Feb 2025
  • Accepted: 16 Feb 2025
  • Available online: 17 Mar 2025

References

Albrecht, R., Le Petit, J., Calvert, V., Terrom, G., Perissol, C., 2010. Changes in the level of alkaline and acid phosphatase activities during green wastes and sewage sludge co-composting. Bioresour. Technol. 101(1), 228-233.
DOI 10.1016/j.biortech.2009.08.017

Ammari, T.G., Al-Omari, Q., Abbassi, B.E., 2012. Composting sewage sludge amended with different sawdust proportions and textures and organic waste of food industry – assessment of quality. Environ. Technol. 33(14), 1641-1649.
DOI 10.1080/09593330.2011.641589

Aycan Dümenci, N., Cagcag Yolcu, O., Aydın Temel, F., Turan, N.G., 2021. Identifying the maturity of co-compost of olive mill waste and natural mineral materials: Modelling via ANN and multi-objective optimization. Bioresour. Technol. 338, 125516.
DOI 10.1016/j.biortech.2021.125516

de Bertoldi, M., Vallini, G., Pera, A., 1983. The biology of composting: A review. Waste Manag. Res. 1(2), 157-176.
DOI 10.1016/0734-242X(83)90055-1

Bustamante, M.A., Alburquerque, J.A., Restrepo, A.P., de la Fuente, C., Paredes, C., Moral, R., Bernal, M.P., 2012. Co-composting of the solid fraction of anaerobic digestates, to obtain added-value materials for use in agriculture. Biomass Bioenergy 43, 26-35.
DOI 10.1016/j.biombioe.2012.04.010

Cáceres, R., Malinska, K., Marfa, O., 2018. Nitrification within composting: A review. Waste Manag. 72, 119-137.
DOI 10.1016/j.wasman.2017.10.049

El Fels, L., Zamama, M., El Asli, A., Hafidi, M., 2014. Assessment of biotransformation of organic matter during co-composting of sewage sludge-lignocelullosic waste by chemical, FTIR analyses, and phytotoxicity tests. Int. Biodeterior. Biodegradation 87, 128-137.
DOI 10.1016/j.ibiod.2013.09.024

Gajalakshmi, S., Abbasi, S.A., 2008. Solid waste management by composting: state of the art. Crit. Rev. Environ. Sci. Technol. 38(5), 311-400.
DOI 10.1080/10643380701413633

Gigliotti, G., Proietti, P., Said-Pullicino, D., Nasini, L., Pezzolla, D., Rosati, L., Porceddu, P.R., 2012. Co-composting of olive husks with high moisture contents: Organic matter dynamics and compost quality. Int. biodeterior. biodegrad. 67, 8-14.
DOI 10.1016/j.ibiod.2011.11.009

Gondek, K., Mierzwa-Hersztek, M., Kopec, M., 2018. Mobility of heavy metals in sandy soil after application of composts produced from maize straw, sewage sludge and biochar. J. Environ. Manage., 210, 1-2.
DOI 10.1016/j.jenvman.2018.01.023

González, D., Colón, J., Gabriel, D., Sánchez, A., 2019. The effect of the composting time on the gaseous emissions and the compost stability in a full-scale sewage sludge composting plant. Sci. Total Environ. 654, 311-323.
DOI 10.1016/j.scitotenv.2018.11.081

Haug, R.T, 1993. The practical handbook of compost engineering (1st ed.). Routledge.
DOI 10.1201/9780203736234

Komilis, D., Kontou, I., Ntougias, S., 2011. A modified static respiration assay and its relationship with an enzymatic test to assess compost stability and maturity. Bioresour. Technol. 102, 5863-5872.
DOI 10.1016/j.biortech.2011.02.021

Meng, L., Li, W., Zhang, S., Wu, Ch., Lv, L., 2017. Feasibility of co-composting of sewage sludge, spent mushroom substrate and wheat straw. Bioresour. Technol. 226, 39-45.
DOI 10.1016/j.biortech.2016.11.054

Miller, F.C., 1992. Composting as a process based on the control of ecologically selective factors. In: Metting, F.B.J. (Ed.), Soil microbial ecology, applications in agricultural and environmental management. Marcel Dekker Inc., New York, pp. 515-544

Mohee, R., Soobhany, N., 2014. Comparison of heavy metals content in compost against vermicompost of organic solid waste: past and present. Resour. Conserv. Recycl. 92, 206-213.
DOI 10.1016/j.resconrec.2014.07.004

Muktadirul Bari Chowdhury, A.K.M., Akratos, C.S., Vayenas, D.V., Pavlou, S., 2013. Olive mill waste composting: a review. Int. Biodeterior. Biodegrad. 85, 108-119.
DOI 10.1016/j.ibiod.2013.06.019

Oshins, C., Michel, F., Louis, P., Richard, T.L., Rynk, R., 2022. Chapter 3 - The composting process. In: Rynk R, editor. The Composting Handbook. Academic Press (2022), 51-101.
DOI 10.1016/B978-0-323-85602-7.00008-X

Oviedo-Ocana, E.R., Torres-Lozada, P., Marmolejo-Rebellon, L.F., Hoyos, L.V., Gonzales, S., Barrena, R., Komilis, D., Sanchez, A., 2015. Stability and maturity of biowaste composts derived by small municipalities: Correlation among physical, chemical and biological indices. Waste Manag. 44, 63-71.
DOI 10.1016/j.wasman.2015.07.034

Peltre, C., Nyord, T., Bruun, S., Jensen, L.S., Magid, J., 2015. Repeated soil application of organic waste amendments reduces draught force and fuel consumption for soil tillage. Agric. Ecosyst. Environ. 21 1, 94-101.
DOI 10.1016/j.agee.2015.06.004

Ponsá, S., Gea, T., Sánchez, A., 2010. The effect of storage and mechanical pretreatment on the biological stability of municipal solid wastes. J. Waste Manag. 30 (3), 441-445.
DOI 10.1016/j.wasman.2009.10.020

Proietti, P., Calisti, R., Gigliotti, G.,Nasini, L., Regni, L., Marchini, A., 2016. Composting optimization: Integrating cost analysis with the physical-chemical properties of materials to be composted. J. Clean. Prod. 137. 1086-1099.
DOI 10.1016/j.jclepro.2016.07.158

Raj, D., Antil, R.S., 2011. Evaluation of maturity and stability parameters of composts prepared from agro-industrial wastes. Bioresour. Technol. 102 (3), 2868-2873.
DOI 10.1016/j.biortech.2010.10.077

Romero, L., Moreno, Juan F., Oulego, P., Collado, S., Díaz, M., 2024. Surfactant-assisted thermal hydrolysis of sewage sludge: Biomolecule extraction and its potential for protease production. J. Environ. Chem. Eng. 12 (5), 113353.
DOI 10.1016/j.jece.2024.113353

Roig, N., Sierra, J., Nadal, M., Martí, E., Navalón-Madrigal. P., Schuhmacher, M., Domingo, JL, 2012. Relationship between pollutant content and ecotoxicity of sewage sludges from Spanish wastewater treatment plants. Sci Total Environ. 425, 99-109.
DOI 10.1016/j.scitotenv.2012.03.018

Şevik, F., Tosun, I., Ekinci, K., 2018. The effect of FAS and C/N ratios on co-composting of sewage sludge, dairy manure and tomato stalks, Waste Manage. 80, 450-455.
DOI 10.1016/j.wasman.2018.07.051

Singh, S., Singh, B., Mishra, B.K., Pandey, A.K., Nain, L., 2012. Microbes in Agrowaste Management for Sustainable Agriculture. In: Satyanarayana, T., Johri, B.N., Prakash, A. (Eds.), Microorganisms in Sustainable Agriculture and Biotechnology. Springer, Netherlands

Smith, S.R., 2009. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environ. Int. 35, 142-156.
DOI 10.1016/j.envint.2008.06.009

Sreesai, S., Peapueng, P., Tippayamongkonkun, T., Sthiannopkao, S., 2013. Assessment of a potential agricultural application of Bangkok-digested sewage sludge and finished compost products. Waste Manage. Res. 31 (9), 925-936.
DOI 10.1177/0734242X13494261

Ščančar, J., Milačič, R., Stražar, M., Burica, O., 2000. Total metal concentrations and partitioning of Cd, Cr, Cu, Fe, Ni and Zn in sewage sludge. Science of The Total Environment 250, 9-19.
DOI 10.1016/S0048-9697(99)00478-7

Tang, J., Zhang, S., Zheng, G., Han, Z., Wang, D., Lin, H., 2024. Role of bioavailability in compost maturity during aerobic composting of chicken manure. Sustainability, 16(24), 11122.
DOI 10.3390/su162411122

Temel, F.A., 2023. Evaluation of the influence of rice husk amendment on compost quality in the composting of sewage sludge. Bioresour. Technol. 373, 128748.
DOI 10.1016/j.biortech.2023.128748

Tuomela, M., Vikman, M., Hatakka, A., Itavaara, M., 2000. Biodegradation of lignin in a compost environment: a review. Bioresour. Technol. 72, 169-183.
DOI 10.1016/S0960-8524(99)00104-2

Villaseñor, J., Rodríguez, L., Fernández, F.J., 2011. Composting of domestic sewage sludge with natural zeolites in a rotary drum reactor. Bioresour. Technol. 102, 1447-1454.
DOI 10.1016/j.biortech.2010.09.085

Vitinaqailevu, R., Rajashekhar Rao, B.K., 2019. The role of chemical amendments on modulating ammonia loss and quality parameters of co-composts from waste cocoa pods. Int. J. Recycl. Org. Waste Agric. 8, 153-160.
DOI 10.1007/s40093- 019-0285-3

Yılmaz, E.C., Aydın Temel, F., Cagcag Yolcu, O., Turan, N.G., 2022. Modeling and optimization of process parameters in co-composting of tea waste and food waste: Radial basis function neural networks and genetic algorithm. Bioresour. Technol. 363, 127910.
DOI 10.1016/j.biortech.2022.127910

Yousefi, J., Younesi, H., Ghasempoury, S.M., 2013. Co-composting of municipal solid waste with sawdust: improving compost quality. Clean Soil Air Water 41 (2), 185-194.
DOI 10.1002/clen.201100315

Wang, C., Hu, X., Chen, M.-L., Wu, Y.-H., 2005. Total concentrations and fractions of Cd, Cr, Pb, Cu, Ni and Zn in sewage sludge from municipal and industrial wastewater treatment plants. J. Hazard. Mater. 119, 245-249.
DOI 10.1016/j.jhazmat.2004.11.023

Zhang, Z.J., Duan, C.Q., Liu, Y.X., Li, A.N., Hu, X., Chen, J.K., Zhang, S., Li, X., Che, R.X., Li, S.Y., Ekelund, F., Cui, X.Y., 2023. Green waste and sewage sludge feeding ratio alters co-composting performance: emphasis on the role of bacterial community during humification. Bioresour. Technol. 380, 129014.
DOI 10.1016/j.biortech.2023.129014

Zheng, G., Wanga, X., Chena, T., Yanga, J., Yanga, J, Liu, J., Shia, X., 2020. Passivation of lead and cadmium and increase of the nutrient content during sewage sludge composting by phosphate amendments. Environ. Res. 185, 109431.
DOI 10.1016/j.envres.2020.109431