an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU


  • Mercedes Regadío - Groundwater Protection and Restoration Group, Department of Civil and Structural Engineering, University of Sheffield, United Kingdom of Great Britain and Northern Ireland
  • Jonathan A. Black - Groundwater Protection and Restoration Group, Department of Civil and Structural Engineering, University of Sheffield, United Kingdom of Great Britain and Northern Ireland
  • Steven F. Thornton - Groundwater Protection and Restoration Group, Department of Civil and Structural Engineering, University of Sheffield, United Kingdom of Great Britain and Northern Ireland

Released under CC BY-NC-ND

Copyright: © 2019 CISA Publisher


Engineered synthetic liners on their own cannot protect the environment and human health against landfill leachate pollution. Despite their initial impermeability, they are susceptible to failure during and after installation and have no attenuation properties. Conversely, natural clay liners can attenuate leachate pollutants by sorption, redox transformations, biodegradation, precipitation, and filtration, decreasing the pollutant flux. Depending on the clay, significant differences exist in their shrinkage potential, sorption capacity, erosion resistance and permeability to fluids, which affects the suitability and performance of the potential clay liner. Here, the physico-chemical, mineralogical and geotechnical characteristics of four natural clayey substrata were compared to discuss their feasibility as landfill liners. To study their chemical compatibility with leachate and rainwater, hydraulic conductivities were measured every ≈2 days spread over 7 weeks of centrifugation at 25 gravities. At field-scale, this is equivalent to every 3.4 yrs spread over 80 yrs. All the clayey substrata had favourable properties for the attenuation of leachate pollutants, although different management options should be applied for each one. London Clay (smectite-rich) is the best material based on the sorption capacity, hydraulic conductivity and low erodibility, but has the greatest susceptibility to excessive shrinkage and alterable clay minerals that partially collapse to illitic structures. Oxford Clay (illite rich) is the best material for buffering acid leachates and supporting degradation of organic compounds. The Coal Measures Clays (kaoline-rich) have the lowest sorption capacity, but also the lowest plasticity and have the most resistant clay minerals to alteration by leachate exposure.


Editorial History

  • Received: 26 Nov 2019
  • Revised: 12 Mar 2020
  • Accepted: 27 Apr 2020
  • Available online: 08 May 2020


Adar, E. and Bilgili, M. S. (2015). The Performance of Four Different Mineral Liners on the Transportation of Chlorinated Phenolic Compounds to Groundwater in Landfills. Sci. World. J., 2015, 171284.
DOI 10.1155/2015/171284

Allen, A. (2000). Attenuation Landfills - the Future in Landfilling. Chap. 17. 18 pp.

Allen, A. (2001). Containment landfills: the myth of sustainability. Eng. Geol., 60, 3-19.
DOI 10.1016/S0013-7952(00)00084-3

ASTM D 4318 Standard Test Methods for Plastic Limit of Soils, 2015 (American Standard)

Aucott, M. (February 2006). The fate of heavy metals in landfills: A Review. Report based on the Project of “Industrial Ecology, Pollution Prevention and the NY-NJ Harbor” Funded by New York Academy of Sciences

Bain, J. A. (1971). “A plasticity chart as an aid to the identification and assessment of industrial clays.” Clay Miner, 9(1): 1-17

Batchelder, M., Mather, J.D., Joseph, J.B. (1998). The Stability of the Oxford Clay as a Mineral Liner for Landfill. Water Environment J. – CIWEM, 12 (2), 92-97.
DOI 10.1111/j.1747-6593.1998.tb00155.x

Beaven, R., Potter, H., Powrie, W., Simoes, A., Smallman, D., Stringfellow. A (2009). Attenuation of organic contaminants in leachate by mineral landfill liners. Environment Agency, Integrated Catchment Science programme. Science report: SC020039/SR5 Project record. 249 pp. ISBN: 978-1-84911-067-9

Benson, C., Zhai, H., Wang, X. (1994). Estimating Hydraulic Conductivity of Compacted Clay Liners. J. Geotech. Eng., 120(2).
DOI 10.1061/(ASCE)0733-9410(1994)120:2(366)

Benson, C. H., Daniel, D. E., Boutwell, G. P. (1999). Field performance of compacted clay liners. J Geotech Geoenviron Eng, 125(5), 390-403.
DOI 10.1061/(asce)1090-0241(1999)125:5(390)

Bertier, P., Schweinar, K., Stanjek, H., Ghanizadeh, A., Clarkson, C. R., Busch, A., Kampman, N., Prinz, D., Amann-Hildenbrand, A., Krooss, B. M., Pipich, V. (2016). On the Use and Abuse of N2 Physisorption for the Characterization of the Pore Structure of Shales. In The Clay Minerals Society Workshop Lectures Series, Vol. 21, Chapter 12, 151-161.
DOI 10.1346/CMS-WLS-21-12

Borchardt, G. (1977). Montmorillonite and other smectite minerals. Minerals in soil environments (pp. 293-330). Madison: Soil Science Society of America

BS 1377: Part 2 Classification tests: 4.3 Point Liquid Limit, 1990 (British Standard)

BS 1377: Part 2 Classification tests: 5.3 Point Plastic Limit, 1990 (British Standard)

BS 1377: Part 2 Classification tests: 8.3 Particle Density (Small Pyknometer), 1990 (British Standard)

BS 1377: Part 4 Compaction-related tests: 3.3 Method using 2.5 kg rammer for soils with particles up to medium-gravel size, 1990 (British Standard Proctor)

Bright, M. I., Thornton, S. F., Lerner, D. N., Tellam, J. H. (2000). Attenuation of landfill leachate by clay liner materials in laboratory columns: 1. Experimental procedures and behaviour of organic contaminants. Waste Manag Res, 18(3), 198-214.
DOI 10.1177/0734242X0001800302

Casagrande, A. (1947). Classification and identification of soils. Proceedings of the American Society of Civil Engineers, 73(6): 783-810

Christensen, J. B., Jensen, D. L., Christensen, T. H. (1996). Effect of dissolved organic carbon on the mobility of cadmium, nickel and zinc in leachate polluted groundwater. Water Res., 30(12), 3037-3049.
DOI 10.1016/S0043-1354(96)00091-7

Chorom, M. and Rengasamy, P. (2005). Dispersion and zeta potential of pure clays as related to net particle charge under varying pH, electrolyte concentration and cation type. Eur J Soil Sci. 46. 657 - 665.
DOI 10.1111/j.1365-2389.1995.tb01362.x

Darcy, H. (1856) In: Dalmont, V., Ed., Les Fontaines Publiques de la Ville de Dijon: Exposition et Application des Principes a Suivre et des Formulesa Employer dans les Questions de Distribution d’Eau. Paris, 647 p

Edmeades, D. C. and Clinton, O. E. (1981). A simple rapid method for the measurement of exchangeable cations and effective cation exchange capacity. Commun. Soil Sci. Plant, 12(7), 683-695.
DOI 10.1080/00103628109367184

Egloffstein, T.A. (2001). Natural bentonites–influence of the ion exchange capacity and partial desiccation on permeability and self–healing capacity of bentonites used in GCLs. Geotext. Geomembranes, 19, 427– 444

di Emidio, G., Verastegui-Flores, R. D., Mazzieri, F., Dominijanni, A. (2017). Modified clays for barriers: a review. Innov. Infrastruct. Solut., 2(1).
DOI 10.1007/s41062-017-0073-8

Fannin, C. A. (2006). An evaluation of the chemical attenuation capacity of UK mineral liner and geological barrier materials for landfill leachate components. Q. J. Eng. Geol. Hydroge., 39(3), 267-281.
DOI 10.1144/1470-9236/04-073

Fisher, I. St. J. and Hudson, J. D. (1987). Pyrite formation in Jurassic shales of contrasting biofacies. Geol. Soc. London, Special Publications, 26(1), 69-78.
DOI 10.1144/GSL.SP.1987.026.01.04

Francisca, F. M. and Glatstein, D. A. (2010). Long term hydraulic conductivity of compacted soils permeated with landfill leachate. Appl. Clay Sci, 49(3), 187-193.
DOI 10.1016/j.clay.2010.05.003

Freeman, I. L. (1964). Mineralogy of ten british brick clays. Clay Miner. B. 5, 474-486

Gregson, S.K., Roberts, R.D., Roberts, J.M. (2008). The fate of heavy metals in co‐disposed refuse. Environ. Technol. Lett., 9(9), 983-990.
DOI 10.1080/09593338809384660

Griffin, R. A., Shimp, N. F., Steele, J. D., Ruch, R. R., White, W. A., Hughes, G. M. (1976). Attenuation of pollutants in municipal landfill leachate by passage through clay. Environ. Sci. Technol., 10(13), 1262-1268.
DOI 10.1021/es60123a006

Head, K. H. (1994). Manual of Soil Laboratory Testing Volume 2: Permeability, shear strength and compressibility tests (Second Edition ed.): CRC Press Taylor & Francis Group

Head, K. H. (2006). Manual of Soil Laboratory Testing Volume 1: Soil Classification and Compaction Tests (Third Edition ed.): CRC Press Taylor & Francis Group

Herrmann, I., Svensson, M., Ecke, H., Kumpiene, J., Maurice, C., Andreas, L., Lagerkvist, A. (2009). Hydraulic conductivity of fly ash–sewage sludge mixes for use in landfill cover liners. Water Res, 43(14), 3541-3547.
DOI 10.1016/j.watres.2009.04.052

Hobbs, P. R. N., Jones, L. D., Kirkham, M. P., Gunn, D. A., Entwisle, D. C. (2019). Shrinkage limit test results and interpretation for clay soils. Q J Eng Geol Hydroge, 52(2), 220–229.
DOI 10.1144/qjegh2018-100

Holden, A. A., Mayer, K. U., Ulrich, A. C. (2012). Evaluating methods for quantifying cation exchange in mildly calcareous sediments in Northern Alberta. Appl. Geochem., 27(12), 2511-2523.
DOI 10.1016/j.apgeochem.2012.08.026

Hudson, J. D. and Martill, D. M. (1994). The Peterborough Member (Callovian, Middle Jurassic) of the Oxford Clay Formation at Peterborough, UK. J. Geol. Soc. London, 151(1), 113.
DOI 10.1144/gsjgs.151.1.0113

Jo H, Katsumi T, Benson CH, Edil TB (2001) Hydraulic conductivity and swelling of non-prehydrated gcls premeated with single species salt solutions. J Geotech Geoenviron Eng ASCE 127(7):557–567
DOI 10.1061/(ASCE)1090-0241(2001)127:7(557)

Kaza S., Yao Lisa C., Bhada-Tata P., Van Woerden F. (2018). What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. Urban Development. Washington, DC. ©World Bank. License: CC BY 3.0 IGO

Kavazanjian, E., Dixon, N., Katsumi, T., Kortegast, A., Legg, P., Zanzinger, H. (2006). Geosynthetic barriers for environmental protection at landfills. Paper presented at the 8th International Conference on Geosynthetics, 8 ICG, Yokohama. Japan

Kemp, S.J. and Wagner, D. (2006). The mineralogy, geochemistry and surface area of mudrocks from the London Clay Formation of southern England (IR/06/060) (pp. 81). Nottingham, UK British Geological Survey

Kjeldsen, P., Barlaz, M. A., Rooker, A. P., Baun, A., Ledin, A., Christensen, T. H. (2002). Present and long-term composition of MSW landfill leachate: A review. Crit. Rev. Env. Sci. Tec., 32(4), 297-336.
DOI 10.1080/10643380290813462

Kong, D. J., Wu, H. N., Chai, J. C., Arulrajah, A. (2017). State-of-the-Art Review of Geosynthetic Clay Liners. Sustainability, 9(11).
DOI 10.3390/su9112110

Koutsopoulou, E., Papoulis, D., Tsolis-Katagas, P., Kornaros, M. (2010). Clay minerals used in sanitary landfills for the retention of organic and inorganic pollutants. Appl. Clay Sci., 49(4), 372-382.
DOI 10.1016/j.clay.2010.05.004

Lee JM, Shackelford CD, Benson CH, Jo HY, Edil TB (2005) Correlating index properties and hydraulic conductivity of geosynthetic clay liners. J Geotech Geoenviron Eng 131(11):1319–1329.
DOI 10.1061/(ASCE)1090-0241(2005)131:11(1319)

Louati, F., Trabelsi, H., Jamei, M., Taibi, S. (2018). Impact of wetting-drying cycles and cracks on the permeability of compacted clayey soil. Eur. J. Environ. Civ. En., 1-26.
DOI 10.1080/19648189.2018.1541144

Mansouri, H., Ajalloeian, R., Sadeghpour, A. H. (2013). The investigation of salinity effects on behavioral parameters of fine-grained soils. Paper presented at the 7th International Conference on Case Histories in Geotechnical Engineering

Maritsa, L., Tsakiridis, P. E., Katsiotis, N. S., Tsiavos, H., Velissariou, D., Xenidis, A., Beazi-Katsioti, M. (2016). Utilization of spilitic mining wastes in the construction of landfill bottom liners. J Environ Chem Eng, 4(2), 1818-1825.
DOI 10.1016/j.jece.2016.03.011

Martill, D. M., Taylor, M. A., Duff, K. L., Riding, J.B., Bown, P. R. (1994). The trophic structure of the biota of the Peterborough Member, Oxford Clay Formation (Jurassic), UK. J. Geol. Soc. London, 151, 173-194.
DOI 10.1144/gsjgs.151.1.0173

McEvoy, F. M., Minchin, D., Harrison, D. J., G., Cameron D., Steadman, E. J., Hobbs, S. F., Spencer, N. A., Evans, D. J., Lott, G. K., Highley, D. E. (2016). Mineral Resource information in Support of National, Regional and Local Planning: West Yorkshire (comprising Metropolitan Boroughs of Bradford, Calderdale, Kirklees and Wakefield and City of Leeds). Commissioned Report, CR/04/172N (pp. 209): British Geological Survey

Mitchell, J.K. and Jaber, M. (1990). Factors controlling the long-term properties of clay liners. Waste containment systems: construction, regulation and performance. ASCE. Geotechnical Special Publication 26, 84–105

Mitchell, J.K. and Soga, K. (2005). Fundamentals of Soil Behavior, 3rd Edition. John Wiley & Sons, Hoboken. ISBN: 978-0-471-46302-3

Moore, D. M. and Reynolds, R. C., Jr. (1997). X-Ray Diffraction and the Identification and Analysis of Clay Minerals. (2nd ed. Xviii ed. Vol. 135). Oxford, New York: Oxford University Press

Ng, C. W. W. (2014). The state-of-the-art centrifuge modelling of geotechnical problems at HKUST. J Zhejiang Univ Sci A, 15(1), 1-21.
DOI 10.1631/jzus.A1300217

Raymahashay, B.C. (1987). A comparative study of clay minerals for pollution control. J. Geol. Soc. India, 30(5), 408-413

Regadío, M., Cargill, A., Black, J. A., Thornton, S. F. (2020). High Attenuation Recycled Materials as landfill liners (the HARM project) – A new concept for improved landfill liner design. EarthArXiv, 15 pp.
DOI 10.31223/

Regadío, M., Ruiz, A. I., de Soto, I. S., Rodriguez-Rastrero, M., Sánchez, N., Gismera, M. J., Sevilla, M. T., da Silva, P., Rodríguez-Procopio, J., Cuevas, J. (2012). Pollution profiles and physicochemical parameters in old uncontrolled landfills. Waste Manage., 32(3), 482-497.
DOI 10.1016/j.wasman.2011.11.008

Regadío, M., Ruiz, A. I., Rodríguez-Rastrero, M., Cuevas, J. (2015). Containment and attenuating layers: An affordable strategy that preserves soil and water from landfill pollution. Waste Manage., 46, 408-419.
DOI 10.1016/j.wasman.2015.08.014

Regadío, M., de Soto, I. S., Rodríguez-Rastrero, M., Ruiz, A. I., Gismera, M. J., Cuevas, J. (2013). Processes and impacts of acid discharges on a natural substratum under a landfill. Sci. Total Environ, 463, 1049-1059.
DOI 10.1016/j.scitotenv.2013.06.047

Rowe, R. K. and Sangam, H. P. (2002). Durability of HDPE geomembranes. Geotext. Geomembranes, 20(2), 77-95.
DOI 10.1016/s0266-1144(02)00005-5

Rowe, R. K., Sangam, H. P., Lake, C. B. (2003). Evaluation of an HDPE geomembrane after 14 years as a leachate lagoon liner. Can. Geotech. J. NRC Canada, 40, 536–550.
DOI 10.1139/T03-019

Ruiz, A. I., Fernández, R., Jiménez, N. S., Rastrero, M. R., Regadío, M., de Soto, I. S., Cuevas, J. (2012). Improvement of attenuation functions of a clayey sandstone for landfill leachate containment by bentonite addition. Sci. Total Environ, 419, 81-89.
DOI 10.1016/j.scitotenv.2011.11.054

Sandoval, G. F. B., Galobardes, I., Teixeira, R. S., Toralles, B. M. (2017). Comparison between the falling head and the constant head permeability tests to assess the permeability coefficient of sustainable Pervious Concretes. Case Studies in Construction Materials, 7, 317-328.
DOI 10.1016/j.cscm.2017.09.001

Schmitz, R.M. (2006). Can the diffuse double layer theory describe changes in hydraulic conductivity of compacted clay? Geotech. Geol. Eng. 24. 1835–1844

Scotney, P. M., Joseph, J. B., Marshall, J. E. A., Lowe, M. J., Croudace, I. W., Milton, J. A. (2012). Geochemical and mineralogical properties of the Lower Callovian (Jurassic) Kellaways Sand, variations in trace element concentrations and implications for hydrogeological risk assessment. Q. J. Eng. Geol. Hydroge., 45(1), 45-60.
DOI 10.1144/1470-9236/11-005

Seed, H.B., Woodward, R.J., Lundgren, R. (1962). Prediction of swelling potential for compacted clays. Soil Mech. Found. Div.Am. Soc. Civil Eng., 88, 53-87

Shackelford, C. and Javed, F. (1991). Large-Scale Laboratory Permeability Testing of a Compacted Clay Soil. Geotech Test J, 14, no. 2: 171-179.
DOI 10.1520/GTJ10559J

Singh, S. and Prasad, A. (2007). Effects of Chemicals on Compacted Clay Liner. EJGE, 12, Bund. D, 1-15

de Soto, I. S., Ruiz, A. I., Ayora, C., Garcia, R., Regadío, M., Cuevas, J. (2012). Diffusion of landfill leachate through compacted natural clays containing small amounts of carbonates and sulfates. Appl. Geochem., 27(6), 1202-1213.
DOI 10.1016/j.apgeochem.2012.02.032

Stepniewski, W., Widomski, M. K., Horn, R. (2011). Hydraulic Conductivity and Landfill Construction. In D. O. (Ed.), Developments in Hydraulic Conductivity Research (pp. 249–227). Rijeka,Croatia: INTECH

Stanjek, H. and Künkel, D. (2016). CEC determination with Cu-triethylenetetramine: recommendations for improving reproducibility and accuracy. Clay Miner., 51(1), 1-17.
DOI 10.1180/claymin.2016.051.1.01

Tanit, C. and Arrykul, S. (2005). Compacted Sand-Bentonite Mixtures for Hydraulic Containment Liners. Songklanakarin J. Sci. Technol., 27(2), 313-323

Taylor, R. and Allen, A. (2006). Waste disposal and landfill: information needs. In O. Schmoll, G. Howard, J. Chilton, I. Chorus: (Eds.), Protecting Groundwater for Health: Managing the Quality of Drinking-water Sources (pp. 339-362). London

Teppen, B. J. and Miller, D. M. (2006). Hydration Energy Determines Isovalent Cation Exchange Selectivity by Clay Minerals. Soil Sci. Soc. Am. J., 70(1), 31.
DOI 10.2136/sssaj2004.0212

Thornton, S. F., Bright, M. I., Lerner, D. N., Tellam, J. H. (2000). Attenuation of landfill leachate by UK Triassic sandstone aquifer materials 2. Sorption and degradation of organic pollutants in laboratory columns. J Contam Hydrol, 43(3-4), 355-383.
DOI 10.1016/s0169-7722(99)00105-9

Thornton, S. F., Bright, M. I., Lerner, D. N., Tellam, J. H., Scott, P. K. (1997). Laboratory studies of landfill leachate attenuation by clay liner materials. Proc. Sardinia 97, 6th Int. Landfill Symp. (T.H. Christensen, R. Cossu, R. Stegmann, eds), CISA-Environmental Sanitary Engineering Centre, Cagliari, Sardinia, 65-75

Thornton, S. F., Lerner, D. N., Bright, M. L., Tellam, J. H. (1993). The Role of Attenuation in Landfill Liners. Proc. Sardinia 93, 4th Int. Landfill Symp. (T. H. Christensen, R. Cossu, R. Stegmann, eds), CISA-Environmental Sanitary Engineering Centre, Cagliari, Sardinia, 407-416

Thornton, S. F., Lerner, D. N., Tellam, J. H. (2001). Attenuation of landfill leachate by clay liner materials in laboratory columns: 2. Behaviour of inorganic contaminants. Waste Manag Res, 19(1), 70-88.
DOI 10.1177/0734242X0101900108

Uma Shankar, M. and Muthukumar, M. (2017). Comprehensive review of geosynthetic clay liner and compacted clay liner. IOP Conference Series: Materials Science and Engineering, 263, 032026.
DOI 10.1088/1757-899X/263/3/032026

Varghese, A. R. and Anjana, T. R. (2015). A Study on M-Sand Bentonite Mixture for Landfill Liners. Paper presented at the International Conference on Emerging Trends in Engineering & Technology (ICETET-2015)

Wagner, J.F. (2013). Mechanical Properties of Clays and Clay Minerals. In F. B. G. Lagaly (Ed.), Developments in Clay Science (2nd ed., Vol. 5: Handbook of Clay Science. A: Fundamentals, pp. 347-381). The Netherlands: Elsevier

Weaver, C. E. and Pollard, L. D. (1973). The Chemistry of Clay Minerals. Developments in Sedimentology (Vol. 15). Amsterdam, London, New York.: Elsevier Scientific Publishing Company

Wei, Z., Shi, S., Shengwei, W., Haoqing, X., Xihui, F., Jianping, B., Fanlu, M. (2018). Patent. Municipal solid waste landfill barrier system capable of prolonging breakthrough time of leachate and manufacturing method thereof. US2018016766 (A1)

Widomski, M. K., Stepniewski, W., Horn, R. (2016). Sustainability of compacted clays as materials for municipal waste landfill liner. Rocznik Ochrona Srodowiska, 18, 439-454

Widomski, M. K., Stepniewski, W., Musz-Pomorska, A. (2018). Clays of Different Plasticity as Materials for Landfill Liners in Rural Systems of Sustainable Waste Management. Sustainability, 10(7).
DOI 10.3390/su10072489

Yalcin, A. (2007). The effects of clay on landslides: A case study. Appl. Clay Sci., 38(1), 77-85.
DOI 10.1016/j.clay.2007.01.007

Yesiller, N., Miller, C., Inci, G., Yaldo, K. (2000). Desiccation and Cracking Behavior of Three Compacted Landfill Liner Soils. Eng. Geol., 57(1-2), 105-121.
DOI 10.1016/S0013-7952(00)00022-3

Zhao, Y., Hu, L., Cui, P., Hueckel, T. (2007). Evolution of shear strength of clayey soils in a landslide due to acid rain: A case study in the area of Three Gorges, China. Paper presented at the 1st North American Landslide Conference

Zhan, T. L. T., Guan, C., Xie, H. J., Chen, Y. M. (2014). Vertical migration of leachate pollutants in clayey soils beneath an uncontrolled landfill at Huainan, China: A field and theoretical investigation. Sci. Total Environ, 470, 290-298.
DOI 10.1016/j.scitotenv.2013.09.081