an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU

THE POTENTIAL OF NATIVE STARCH BIOMASS TO PRODUCE MATERIALS FOR ENERGY APPLICATIONS

  • Omar P. Troncoso - Pontificia Universidad Católica del Perú, Department of Mechanical Engineering, Peru
  • Fernando G. Torres - Pontificia Universidad Católica del Perú, Department of Mechanical Engineering, Peru
  • Virgilio B. Delgado - Pontificia Universidad Católica del Perú, Department of Mechanical Engineering, Peru

Access restricted to subscribed members only

Released under All rights reserved

Copyright: © 2024 CISA Publisher


Abstract

Starch is widely used in the food, packaging, paper, and biomedical industries, primarily sourced from commercial crops such as potato, maize, corn, cassava, and wheat. However, native Andean potatoes, despite their high starch content and genetic diversity, remain underutilized in industrial applications. These varieties are often overlooked in favor of commercial starch sources. They are usually considered non-commercially viable due to cosmetic defects, irregular sizes, or overproduction surpluses. In this study, starch extracted from a native Andean potato variety was reinforced with Barium Titanate Oxide (BTO) to fabricate a biopolymeric film with a high dielectric constant. This composite film was employed as the triboelectric layer in a freestanding sliding Triboelectric Nanogenerator (TENG), which achieved a maximum output voltage of 25 V and a short-circuit current of 2.5 μA. This TENG was used to charge a 3.4 μF capacitor, demonstrating the potential of Andean potato starch-based films for energy harvesting applications, particularly in self-powered sensors and low-power electronic devices.

Keywords


Editorial History

  • Received: 15 Nov 2024
  • Revised: 28 Mar 2025
  • Accepted: 15 Apr 2025
  • Available online: 12 May 2025

References

Ahmed, A., Hassan, I., Ibn-Mohammed, T., Mostafa, H., Reaney, I. M., Koh, L. S. C., Zu, J., Wang, Z. L., 2017. Environmental life cycle assessment and techno-economic analysis of triboelectric nanogenerators. Energy & Environmental Science, 10(3), 653–671. 10.1039/C7EE00158D

Buléon, A., Colonna, P., Planchot, V., Ball, S., 1998. Starch granules: structure and biosynthesis. International Journal of Biological Macromolecules, 23(2), 85–112.
DOI 10.1016/S0141-8130(98)00040-3

Ccorahua, R., Cordero, A., Luyo, C., Quintana, M., Vela, E., 2019a. Starch-Cellulose-Based Triboelectric Nanogenerator Obtained by a Low-Cost Cleanroom-Free Processing Method. MRS Advances, 4(23), 1315–1320.
DOI 10.1557/adv.2018.652

Ccorahua, R., Huaroto, J., Luyo, C., Quintana, M., Vela, E. A., 2019b. Enhanced-performance bio-triboelectric nanogenerator based on starch polymer electrolyte obtained by a cleanroom-free processing method. Nano Energy, 59, 610–618.
DOI 10.1016/j.nanoen.2019.03.018

Chaturvedi, E., Roy, P., 2024. Tailoring Ionic Salt in Chitosan-Activated Carbon-Based Triboelectric Nanogenerators for Enhanced Mechanical Energy Harvesting. ACS Applied Energy Materials, 7(21), 9735–9745.
DOI 10.1021/acsaem.4c01455

Chauhan, A., Islam, F., Imran, A., Ikram, A., Zahoor, T., Khurshid, S., Shah, M. A., 2023. A review on waste valorization, biotechnological utilization, and management of potato. Food Science & Nutrition, 11(10), 5773–5785.
DOI 10.1002/fsn3.3546

Choque-Quispe, D., Obregón, F. H. G., Carranza, M. V. O., Solano, A. M.R., Ligarda, C. A. S, Palomino, W. R., Choque-Quispe, K.,Torres, M. J. C., 2024. Physicochemical and technofunctional properties of high Andean native potato starch. Journal of Agriculture and Food Research, 15, 100955.
DOI 10.1016/j.jafr.2023.100955

Das, B., Paul, R., Karmakar, R., Meikap, A. K., Kumar, A., Krishnamurthy, S., Ghosh, R., 2024. A Triboelectric Nanogenerator Based on Waste Plastic and Layered Materials via Modulation of the Electrical and Dielectric Properties. ACS Applied Energy Materials, 7(16), 7025–7036.
DOI 10.1021/acsaem.4c01205

Devaux, A., Ordinola, M., Suarez, V., Hareau, G., 2024. Current status and prospects of potato processing in the Andean zone, implications for breeding and variety selection. International Potato Center

Eliasson, A.-C., 2004. Starch in Food: Structure, Function and Applications (1st ed.). Woodhead Publishing Limited

Forfora, N., Azuaje, I., Kanipe, T., Gonzalez, J. A., Lendewig, M., Urdaneta, I., Venditti, R., Gonzalez, R., Argyropoulos, D., 2024. Are starch-based materials more eco-friendly than fossil-based? A critical assessment. Cleaner Environmental Systems, 13, 100177.
DOI 10.1016/j.cesys.2024.100177

Gu, L., Wang, Y., Wang, X., Li, S., Wang, W., Li, C., Lin, C., Li, Z., Xu, J., Cui, N., Liu, J., 2023. Waste Take-out Boxes Reused in High-Performance Triboelectric Nanogenerator for Energy Harvesting and Self-Powered Sensor. ACS Applied Electronic Materials, 5(4), 2145–2155.
DOI 10.1021/acsaelm.3c00038

Hao, Y., Zhang, C., Su, W., Zhang, H., Qin, Y., Wang, Z. L., Li, X., 2024. Sustainable materials systems for triboelectric nanogenerator. SusMat, 4(6), e244.
DOI 10.1002/sus2.244

Kamilya, T., Shin, J., Cho, H., Park, J., 2024. Corn Starch-Derived Gel for High-Performance Triboelectric Nanogenerators. ACS Applied Polymer Materials, 6(1), 1006–1014.
DOI 10.1021/acsapm.3c02641

Khandelwal, G., Raj, N. P. M. J., Alluri, N. R., Kim, S. J., 2021. Enhancing Hydrophobicity of Starch for Biodegradable Material-Based Triboelectric Nanogenerators. ACS Sustainable Chemistry & Engineering, 9(27), 9011–9017.
DOI 10.1021/acssuschemeng.1c01853

Kim, W. G., Kim, D. W., Tcho, I. W., Kim, J. K., Kim, M. S., Choi, Y. K., 2021. Triboelectric Nanogenerator: Structure, Mechanism, and Applications. ACS Nano, 15(1), 258–287.
DOI 10.1021/acsnano.0c09803

Meinzen-Dick, R. S., Devaux, A., Antezana, I., 2009. Underground assets: potato biodiversity to improve the livelihoods of the poor. International Journal of Agricultural Sustainability, 7(4), 235–248.
DOI 10.3763/ijas.2009.0380

Mi, Y., Lu, Y., Shi, Y., Zhao, Z., Wang, X., Meng, J., Cao, X., Wang, N., 2022. Biodegradable Polymers in Triboelectric Nanogenerators. Polymers, 15(1), 222.
DOI 10.3390/polym15010222

Niu, S., Liu, Y., Wang, S., Lin, L., Zhou, Y. S., Hu, Y., Wang, Z. L., 2013. Theory of Sliding‐Mode Triboelectric Nanogenerators. Advanced Materials, 25(43), 6184–6193.
DOI 10.1002/adma.201302808

Niu, S., Wang, Z. L., 2015. Theoretical systems of triboelectric nanogenerators. Nano Energy, 14, 161–192.
DOI 10.1016/j.nanoen.2014.11.034

Prateek, Thakur, V. K., Gupta, R. K., 2016. Recent Progress on Ferroelectric Polymer-Based Nanocomposites for High Energy Density Capacitors: Synthesis, Dielectric Properties, and Future Aspects. Chemical Reviews, 116(7), 4260–4317.
DOI 10.1021/acs.chemrev.5b00495

Rojas, P. M. B., De la Torre, G. E., Torres, F. G., 2021. Influence of the source of starch and plasticizers on the environmental burden of starch-Brazil nut fiber biocomposite production: A life cycle assessment approach. Science of The Total Environment, 769, 144869.
DOI 10.1016/j.scitotenv.2020.144869

Saqib, Q. M., Shaukat, R. A., Khan, M. U., Chougale, M., Bae, J., 2020. Biowaste Peanut Shell Powder-Based Triboelectric Nanogenerator for Biomechanical Energy Scavenging and Sustainably Powering Electronic Supplies. ACS Applied Electronic Materials, 2(12), 3953–3963.
DOI 10.1021/acsaelm.0c00791

Singh, M., Yadav, B. C., Ranjan, A., Kaur, M., Gupta, S. K., 2017. Synthesis and characterization of perovskite barium titanate thin film and its application as LPG sensor. Sensors and Actuators B: Chemical, 241, 1170–1178.
DOI 10.1016/j.snb.2016.10.018

Torres, F. G., De la Torre, G. E., 2021. Polysaccharide-based triboelectric nanogenerators: A review. Carbohydrate Polymers, 251, 117055.
DOI 10.1016/j.carbpol.2020.117055

Torres, F. G., Gonzales, K. N., Troncoso, O. P., Corman-Hijar, J. I., Cornejo, G., 2023. A Review on the Development of Biopolymer Nanocomposite-Based Triboelectric Nanogenerators (Bio-TENGs). ACS Applied Electronic Materials, 5(7), 3546–3559.
DOI 10.1021/acsaelm.3c00621

Torres, F. G., Troncoso, O. P., Díaz, D. A., Amaya, E., 2011. Morphological and thermal characterization of native starches from Andean crops. Starch - Stärke, 63(6), 381–389.
DOI 10.1002/star.201000155

Torres, F. G., Troncoso, O. P., Vega, J., Wong, M., 2015. Influence of Botanic Origin on the Morphology and Size of Starch Nanoparticles from Andean Native Starch Sources. Polymers from Renewable Resources, 6(3), 91–103.
DOI 10.1177/204124791500600302

Troncoso, O. P., Torres, F. G., 2020. Non‐conventional starch nanoparticles for drug delivery applications. Medical Devices & Sensors, 3(6), e10111.
DOI 10.1002/mds3.10111

Vilpoux, O. F., 2023. Opportunities and challenges for underground starchy crops of South American origin. In Starchy Crops Morphology, Extraction, Properties and Applications (pp. 353–370). Elsevier.
DOI 10.1016/B978-0-323-90058-4.00002-5

Yu, X., Chen, L., Jin, Z., Jiao, A., 2021. Research progress of starch-based biodegradable materials: a review. Journal of Materials Science, 56(19), 11187–11208.
DOI 10.1007/s10853-021-06063-1

Zhu, F., 2020. Underutilized and unconventional starches: Why should we care? Trends in Food Science & Technology, 100, 363–373.
DOI 10.1016/j.tifs.2020.04.018

Zhu, Z., Xia, K., Xu, Z., Lou, H., Zhang, H., 2018. Starch Paper-Based Triboelectric Nanogenerator for Human Perspiration Sensing. Nanoscale Research Letters, 13, 365.
DOI 10.1186/s11671-018-2786-9