Released under All rights reserved
Copyright: © 2024 CISA Publisher
Ahmed, A., Hassan, I., Ibn-Mohammed, T., Mostafa, H., Reaney, I. M., Koh, L. S. C., Zu, J., Wang, Z. L., 2017. Environmental life cycle assessment and techno-economic analysis of triboelectric nanogenerators. Energy & Environmental Science, 10(3), 653–671. 10.1039/C7EE00158D
Buléon, A., Colonna, P., Planchot, V., Ball, S., 1998. Starch granules: structure and biosynthesis. International Journal of Biological Macromolecules, 23(2), 85–112.
DOI 10.1016/S0141-8130(98)00040-3
Ccorahua, R., Cordero, A., Luyo, C., Quintana, M., Vela, E., 2019a. Starch-Cellulose-Based Triboelectric Nanogenerator Obtained by a Low-Cost Cleanroom-Free Processing Method. MRS Advances, 4(23), 1315–1320.
DOI 10.1557/adv.2018.652
Ccorahua, R., Huaroto, J., Luyo, C., Quintana, M., Vela, E. A., 2019b. Enhanced-performance bio-triboelectric nanogenerator based on starch polymer electrolyte obtained by a cleanroom-free processing method. Nano Energy, 59, 610–618.
DOI 10.1016/j.nanoen.2019.03.018
Chaturvedi, E., Roy, P., 2024. Tailoring Ionic Salt in Chitosan-Activated Carbon-Based Triboelectric Nanogenerators for Enhanced Mechanical Energy Harvesting. ACS Applied Energy Materials, 7(21), 9735–9745.
DOI 10.1021/acsaem.4c01455
Chauhan, A., Islam, F., Imran, A., Ikram, A., Zahoor, T., Khurshid, S., Shah, M. A., 2023. A review on waste valorization, biotechnological utilization, and management of potato. Food Science & Nutrition, 11(10), 5773–5785.
DOI 10.1002/fsn3.3546
Choque-Quispe, D., Obregón, F. H. G., Carranza, M. V. O., Solano, A. M.R., Ligarda, C. A. S, Palomino, W. R., Choque-Quispe, K.,Torres, M. J. C., 2024. Physicochemical and technofunctional properties of high Andean native potato starch. Journal of Agriculture and Food Research, 15, 100955.
DOI 10.1016/j.jafr.2023.100955
Das, B., Paul, R., Karmakar, R., Meikap, A. K., Kumar, A., Krishnamurthy, S., Ghosh, R., 2024. A Triboelectric Nanogenerator Based on Waste Plastic and Layered Materials via Modulation of the Electrical and Dielectric Properties. ACS Applied Energy Materials, 7(16), 7025–7036.
DOI 10.1021/acsaem.4c01205
Devaux, A., Ordinola, M., Suarez, V., Hareau, G., 2024. Current status and prospects of potato processing in the Andean zone, implications for breeding and variety selection. International Potato Center
Eliasson, A.-C., 2004. Starch in Food: Structure, Function and Applications (1st ed.). Woodhead Publishing Limited
Forfora, N., Azuaje, I., Kanipe, T., Gonzalez, J. A., Lendewig, M., Urdaneta, I., Venditti, R., Gonzalez, R., Argyropoulos, D., 2024. Are starch-based materials more eco-friendly than fossil-based? A critical assessment. Cleaner Environmental Systems, 13, 100177.
DOI 10.1016/j.cesys.2024.100177
Gu, L., Wang, Y., Wang, X., Li, S., Wang, W., Li, C., Lin, C., Li, Z., Xu, J., Cui, N., Liu, J., 2023. Waste Take-out Boxes Reused in High-Performance Triboelectric Nanogenerator for Energy Harvesting and Self-Powered Sensor. ACS Applied Electronic Materials, 5(4), 2145–2155.
DOI 10.1021/acsaelm.3c00038
Hao, Y., Zhang, C., Su, W., Zhang, H., Qin, Y., Wang, Z. L., Li, X., 2024. Sustainable materials systems for triboelectric nanogenerator. SusMat, 4(6), e244.
DOI 10.1002/sus2.244
Kamilya, T., Shin, J., Cho, H., Park, J., 2024. Corn Starch-Derived Gel for High-Performance Triboelectric Nanogenerators. ACS Applied Polymer Materials, 6(1), 1006–1014.
DOI 10.1021/acsapm.3c02641
Khandelwal, G., Raj, N. P. M. J., Alluri, N. R., Kim, S. J., 2021. Enhancing Hydrophobicity of Starch for Biodegradable Material-Based Triboelectric Nanogenerators. ACS Sustainable Chemistry & Engineering, 9(27), 9011–9017.
DOI 10.1021/acssuschemeng.1c01853
Kim, W. G., Kim, D. W., Tcho, I. W., Kim, J. K., Kim, M. S., Choi, Y. K., 2021. Triboelectric Nanogenerator: Structure, Mechanism, and Applications. ACS Nano, 15(1), 258–287.
DOI 10.1021/acsnano.0c09803
Meinzen-Dick, R. S., Devaux, A., Antezana, I., 2009. Underground assets: potato biodiversity to improve the livelihoods of the poor. International Journal of Agricultural Sustainability, 7(4), 235–248.
DOI 10.3763/ijas.2009.0380
Mi, Y., Lu, Y., Shi, Y., Zhao, Z., Wang, X., Meng, J., Cao, X., Wang, N., 2022. Biodegradable Polymers in Triboelectric Nanogenerators. Polymers, 15(1), 222.
DOI 10.3390/polym15010222
Niu, S., Liu, Y., Wang, S., Lin, L., Zhou, Y. S., Hu, Y., Wang, Z. L., 2013. Theory of Sliding‐Mode Triboelectric Nanogenerators. Advanced Materials, 25(43), 6184–6193.
DOI 10.1002/adma.201302808
Niu, S., Wang, Z. L., 2015. Theoretical systems of triboelectric nanogenerators. Nano Energy, 14, 161–192.
DOI 10.1016/j.nanoen.2014.11.034
Prateek, Thakur, V. K., Gupta, R. K., 2016. Recent Progress on Ferroelectric Polymer-Based Nanocomposites for High Energy Density Capacitors: Synthesis, Dielectric Properties, and Future Aspects. Chemical Reviews, 116(7), 4260–4317.
DOI 10.1021/acs.chemrev.5b00495
Rojas, P. M. B., De la Torre, G. E., Torres, F. G., 2021. Influence of the source of starch and plasticizers on the environmental burden of starch-Brazil nut fiber biocomposite production: A life cycle assessment approach. Science of The Total Environment, 769, 144869.
DOI 10.1016/j.scitotenv.2020.144869
Saqib, Q. M., Shaukat, R. A., Khan, M. U., Chougale, M., Bae, J., 2020. Biowaste Peanut Shell Powder-Based Triboelectric Nanogenerator for Biomechanical Energy Scavenging and Sustainably Powering Electronic Supplies. ACS Applied Electronic Materials, 2(12), 3953–3963.
DOI 10.1021/acsaelm.0c00791
Singh, M., Yadav, B. C., Ranjan, A., Kaur, M., Gupta, S. K., 2017. Synthesis and characterization of perovskite barium titanate thin film and its application as LPG sensor. Sensors and Actuators B: Chemical, 241, 1170–1178.
DOI 10.1016/j.snb.2016.10.018
Torres, F. G., De la Torre, G. E., 2021. Polysaccharide-based triboelectric nanogenerators: A review. Carbohydrate Polymers, 251, 117055.
DOI 10.1016/j.carbpol.2020.117055
Torres, F. G., Gonzales, K. N., Troncoso, O. P., Corman-Hijar, J. I., Cornejo, G., 2023. A Review on the Development of Biopolymer Nanocomposite-Based Triboelectric Nanogenerators (Bio-TENGs). ACS Applied Electronic Materials, 5(7), 3546–3559.
DOI 10.1021/acsaelm.3c00621
Torres, F. G., Troncoso, O. P., Díaz, D. A., Amaya, E., 2011. Morphological and thermal characterization of native starches from Andean crops. Starch - Stärke, 63(6), 381–389.
DOI 10.1002/star.201000155
Torres, F. G., Troncoso, O. P., Vega, J., Wong, M., 2015. Influence of Botanic Origin on the Morphology and Size of Starch Nanoparticles from Andean Native Starch Sources. Polymers from Renewable Resources, 6(3), 91–103.
DOI 10.1177/204124791500600302
Troncoso, O. P., Torres, F. G., 2020. Non‐conventional starch nanoparticles for drug delivery applications. Medical Devices & Sensors, 3(6), e10111.
DOI 10.1002/mds3.10111
Vilpoux, O. F., 2023. Opportunities and challenges for underground starchy crops of South American origin. In Starchy Crops Morphology, Extraction, Properties and Applications (pp. 353–370). Elsevier.
DOI 10.1016/B978-0-323-90058-4.00002-5
Yu, X., Chen, L., Jin, Z., Jiao, A., 2021. Research progress of starch-based biodegradable materials: a review. Journal of Materials Science, 56(19), 11187–11208.
DOI 10.1007/s10853-021-06063-1
Zhu, F., 2020. Underutilized and unconventional starches: Why should we care? Trends in Food Science & Technology, 100, 363–373.
DOI 10.1016/j.tifs.2020.04.018
Zhu, Z., Xia, K., Xu, Z., Lou, H., Zhang, H., 2018. Starch Paper-Based Triboelectric Nanogenerator for Human Perspiration Sensing. Nanoscale Research Letters, 13, 365.
DOI 10.1186/s11671-018-2786-9
Fernando G. Torres and Adrian Urtecho
Published 12 May 2025Title | Support | Price |
---|