an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU

SUSTAINABLE MANAGEMENT OF ENERGY SUPPLY INCLUDING THE USE OF WASTE-BASED BIOGAS PROCESSES

  • Julia Kohl - Institute of Biotechnology and Environmental Engineering (IBU), Ostfalia University of Applied Sciences, Germany
  • Faika Bozankaya - Institute of Biotechnology and Environmental Engineering (IBU), Ostfalia University of Applied Sciences, Germany
  • Silvia Drescher-Hartung - Institute of Biotechnology and Environmental Engineering (IBU), Ostfalia University of Applied Sciences, Germany
  • Thorsten Ahrens - Institute of Biotechnology and Environmental Engineering (IBU), Ostfalia University of Applied Sciences, Germany
  • Corinna Klapproth - Institute of Biotechnology and Environmental Engineering (IBU), Ostfalia University of Applied Sciences, Germany

DOI 10.31025/2611-4135/2018.13651

Released under CC BY-NC-ND

Copyright: © 2018 Cisa Publisher

Editorial History

  • Received: 22 Feb 2018
  • Revised: 16 Apr 2018
  • Accepted: 26 Jun 2018
  • Available online: 30 Jun 2018

Abstract

In order to meet the goal of 50% renewables in the electrical energy mix till 2030 set by the German government the expansion must be continued. One of the biggest problems with the increasing share of renewable energy are the arising fluctuations. In this study it was investigated how the manageability of the biogas production from waste can be used to create a flexible production strategy in order to improve the reliability of a renewable energy supply. The current misbalances between energy demand and supply of wind turbines and PV systems are the basis for this new strategy. The simulation is based on a stand-alone 100% renewable energy supply of a model town with a population of 1,600 people. In order to investigate the impact of this new biogas management strategy using 100% renewable energy supply (including wind and solar energy) a simulation tool using MATLAB was designed. Furthermore, to receive preliminary real data regarding flexible biogas production tests were done with a plug-flow digester. Lastly, an economic analysis regarding the profitability was carried out. Simulations in this study have shown that using a flexible and demand adapted biogas management can reduce the required battery capacity by up to 60%. Nonetheless, the combination with feed-in management of wind and solar power has to be further investigated.

Keywords


References

AGEE-Stat. (2016). Entwicklung der erneuerbaren Energien in Deutschland im Jahr 2016: Quartalsbericht.

Boggasch, E. (2016). Busgestütztes Energiemanagement eines Verbundes regenerativer Energieanlagen. In E. Bollin, M. Becker, E. Boggasch, M. Fraaß, A. Karbach, P. Ritzenhoff, & D. Striebel (Eds.), Lehrbuch. Regenerative Energien im Gebäude nutzen: Wärme- und Kälteversorgung, Automation, ausgeführte Beispiele (2nd ed., pp. 234–242). Wiesbaden: Springer Vieweg.

Energiekonzept für eine umweltschonende, zuverlässige und bezahlbare Energieversorgung, Bundesregierung Deutschland 28.10.2010.

Drescher-Hartung, S., Stasiškienė, Ž., & Ahrens, T. (2018). ENERGY PRODUCTION FROM RESIDUES: ECONOMIC ASSESSMENT OF BIOGAS INSTALLATIONS - DEVELOPMENT OF A CALCULATION TOOL. Detritus. (01), 64–68.

Eurostat. (2017). Share of energy from renewable sources. Retrieved from http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nrg_ind_335a&lang=en

FNR. (2017). Gärsubstrate, Biogasausbeuten. Retrieved from https://biogas.fnr.de/gewinnung/gaersubstrate/

Freidank, T., Daukšys, V., & Ahrens, T. (2013). USER GUIDELINE FOR "PILOT B" OPERATION: ABOWE Output Report (No. O.4.2). Retrieved from Ostfalia University of Applied Sciences website: www.abowe.eu

Freidank, T., Drescher-Hartung, S., Behnsen, A., Anne, O., Daukšys, V., & Ahrens, T. (2013). MIDTERM OUTPUT REPORT – PILOT B IN LITHUANIA: ABOWE Output Report (No. O.4.3). Retrieved from Ostfalia University of Applied Sciences website: www.abowe.eu

Herbes, C., Halbherr, V., & Braun, L. (2018). Preise für die Abgabe von Wärme aus Biogasanlagen an Dritte. Agrarbetrieb, 01, 12–15.

Lienen, T., Kleyböcker, A., Brehmer, M., Kraume, M., Moeller, L., Görsch, K., & Würdemann, H. (2013). Floating layer formation, foaming, and microbial community structure change in full-scale biogas plant due to disruption of mixing and substrate overloading. Energy, Sustainability and Society, 3(1), 20.
DOI 10.1186/2192-0567-3-20

Mauky, E., Jacobi, H. F., Liebetrau, J., & Nelles, M. (2015). Flexible biogas production for demand-driven energy supply: Feeding strategies and types of substrates. Bioresource Technology : Biomass, Bioenergy, Biowastes, Conversion Technologies, Biotransformation, Production Technologies, 178(1), 262–269.

Moeller, L., Goersch, K., Neuhaus, J., Zehnsdorf, A., & Mueller, R. (2012). Comparative review of foam formation in biogas plants and ruminant bloat. Energy, Sustainability and Society, 2(1), 12.
DOI 10.1186/2192-0567-2-12

Moeller, M., Görsch, K., Müller, R. A., & Zehnsdorf, A. (2012). Bildung von Schaum in Biogasanlagen und seine Bekämpfung – Erfahrungen aus der Praxis. Landtechnik, 67(2), 110–113.

Patra, A. K., & Saxena, J. (2011). Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. Journal of the Science of Food and Agriculture, 91(1), 24–37.
DOI 10.1002/jsfa.4152

Rieger, C., & Weiland, P. (2006). Prozessstörungen frühzeitig erkennen. BIOGAS Journal, 4, 18–20.

Stadtwerke Wolfenbüttel. (2017). Allgemeine Preise. Retrieved from https://www.stadtwerke-wf.de/strom/allgemeine-preise.html

VDE. (2015). Kompendium: Li-Ionen-Batterien: Grundlagen, Bewertungskriterien, Gesetze und Normen. Frankfurt am Main.


feb
23
sep
30