an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU


  • Patricia Rabelo Monich - Department of Industrial Engineering, University of Padova, Italy
  • Fulden Dogrul - Department of Metallurgy and Materials Engineering, Sakarya University, Turkey - Department of Industrial Engineering, University of Padova, Italy
  • Hugo Lucas - IME Process Metallurgy and Metal Recycling, RWTH Aachen University, Germany
  • Bernd Friedrich - IME Process Metallurgy and Metal Recycling, RWTH Aachen University, Germany
  • Enrico Bernardo - Department of Industrial Engineering, University of Padova, Italy

Released under CC BY-NC-ND

Copyright: © 2019 CISA Publisher


Vitrification of municipal solid waste incineration (MSWI) bottom ash is an effective method to produce a chemically stable glass, with metal recovery. In order to justify the high costs of this process, the vitrified residue can then be upcycled into potential marketable products. In this study, vitrified bottom ash was successfully converted into strong and chemically stable porous glass-ceramics by the combination of alkali activation and sintering. After the activation of the glass in a NaOH solution of low molarity, foams were easily produced by intensive mechanical stirring, with the aid of a surfactant, and stabilized by gelation. The obtained open-celled material was further consolidated by a sintering treatment, at 800-900°C. The addition of recycled soda-lime glass allowed activation at low molarity and sintering at lower temperature, but it reduced the mechanical properties and the stabilization of heavy metals. On the other hand, the increase in molarity of the alkaline solution increased the porosity and also the strength of foams from vitrified bottom ash.


Editorial History

  • Received: 17 Apr 2019
  • Revised: 11 Jul 2019
  • Accepted: 23 Jul 2019
  • Available online: 23 Dec 2019


Bassani, M., Santagata, E., Baglieri, O., Ferraris, M., Salvo, M., & Ventrella, A. (2009). Use of vitrified bottom ashes of municipal solid waste incinerators in bituminous mixtures in substitution of natural sands. Advances in Applied Ceramics, 108(1), 33–43.
DOI 10.1179/174367608X364285

Bernardo, E. (2008). Fast sinter-crystallization of a glass from waste materials. Journal of Non-Crystalline Solids, 354(29), 3486–3490.
DOI 10.1016/j.jnoncrysol.2008.03.021

Bernardo, E., Dattoli, A., Bonomo, E., Esposito, L., Rambaldi, E., & Tucci, A. (2011). Application of an industrial waste glass in “glass-ceramic stoneware.” International Journal of Applied Ceramic Technology, 8(5), 1153–1162.
DOI 10.1111/j.1744-7402.2010.02550.x

CES EduPack 2018 software package - (2018)

Colombo, P., Brusatin, G., Bernardo, E., & Scarinci, G. (2003). Inertization and reuse of waste materials by vitrification and fabrication of glass-based products. Current Opinion in Solid State and Materials Science, 7(3), 225–239.
DOI 10.1016/j.cossms.2003.08.002

Cucchiella, F., D’Adamo, I., & Gastaldi, M. (2017). Sustainable waste management: Waste to energy plant as an alternative to landfill. Energy Conversion and Management, 131, 18–31.
DOI 10.1016/j.enconman.2016.11.012

Directive 2003/33/EC. (2003). Official Journal of the European Communities

Elsayed, H., Romero, A. R., Ferroni, L., Gardin, C., Zavan, B., & Bernardo, E. (2017). Bioactive glass-ceramic scaffolds from novel “inorganic gel casting” and sinter-crystallization. Materials, 10(2).
DOI 10.3390/ma10020171

Garcia-Lodeiro, I., Aparicio-Rebollo, E., Fernández-Jimenez, A., & Palomo, A. (2016). Effect of calcium on the alkaline activation of aluminosilicate glass. Ceramics International, 42(6), 7697–7707.
DOI 10.1016/j.ceramint.2016.01.184

He, P. J., Pu, H. X., Shao, L. M., & Zhang, H. (2017). Impact of co-landfill proportion of bottom ash and municipal solid waste composition on the leachate characteristics during the acidogenesis phase. Waste Management, 69, 232–241.
DOI 10.1016/j.wasman.2017.08.021

Höland, W., & Beall, G. H. (2012). Glass-Ceramic Technology. Hoboken, NJ, USA: John Wiley & Sons, Inc

Hoornweg, D., & Bhada-Tata, P. (2012). What a waste: A global review of solid waste management. The World Bank (Vol. 15). Washington.
DOI 10.1111/febs.13058

Joseph, A., Snellings, R., Van den Heede, P., Matthys, S., & De Belie, N. (2018). The Use of Municipal Solid Waste Incineration Ash in Various Building Materials: A Belgian Point of View. Materials, 11(1), 141.
DOI 10.3390/ma11010141

Liu, D. M. (1997). Influence of porosity and pore size on the compressive strength of porous hydroxyapatite ceramic. Ceramics International, 23(2), 135–139.
DOI 10.1016/S0272-8842(96)00009-0

Monich, P. R., Romero, A. R., Höllen, D., & Bernardo, E. (2018). Porous glass-ceramics from alkali activation and sinter-crystallization of mixtures of waste glass and residues from plasma processing of municipal solid waste. Journal of Cleaner Production, 188, 871–878.
DOI 10.1016/j.jclepro.2018.03.167

Norm EN 12457-4. (2002)

Park, Y. J., Moon, S. O., & Heo, J. (2003). Crystalline phase control of glass ceramics obtained from sewage sludge fly ash. Ceramics International, 29(2), 223–227.
DOI 10.1016/S0272-8842(02)00109-8

Pisciella, P., Crisucci, S., Karamanov, A., & Pelino, M. (2001). Chemical durability of glasses obtained by vitrification of industrial wastes. Waste Management, 21(1), 1–9.
DOI 10.1016/S0956-053X(00)00077-5

Pisciella, P., & Pelino, M. (2005). FTIR spectroscopy investigation of the crystallisation process in an iron rich glass. Journal of the European Ceramic Society, 25(11), 1855–1861.
DOI 10.1016/j.jeurceramsoc.2004.06.012

Rincón, A., Desideri, D., & Bernardo, E. (2018). Functional glass-ceramic foams from ‘inorganic gel casting’ and sintering of glass/slag mixtures. Journal of Cleaner Production, 187, 250–256.
DOI 10.1016/j.jclepro.2018.03.065

Rincón, A., Giacomello, G., Pasetto, M., & Bernardo, E. (2017). Novel ‘inorganic gel casting’ process for the manufacturing of glass foams. Journal of the European Ceramic Society, 37(5), 2227–2234.
DOI 10.1016/j.jeurceramsoc.2017.01.012

Rincón, A., Marangoni, M., Cetin, S., & Bernardo, E. (2016). Recycling of inorganic waste in monolithic and cellular glass-based materials for structural and functional applications. Journal of Chemical Technology and Biotechnology, 91(7), 1946–1961.
DOI 10.1002/jctb.4982

Rincon Romero, A., Salvo, M., & Bernardo, E. (2018). Up-cycling of vitrified bottom ash from MSWI into glass-ceramic foams by means of ‘inorganic gel casting’ and sinter-crystallization. Construction and Building Materials, 192, 133–140.
DOI 10.1016/j.conbuildmat.2018.10.135

Sabbas, T., Polettini, A., Pomi, R., Astrup, T., Hjelmar, O., Mostbauer, P., … Lechner, P. (2003). Management of municipal solid waste incineration residues. Waste Management, 23(1), 61–88.
DOI 10.1016/S0956-053X(02)00161-7

Scarinci, G., Brusatin, G., & Bernardo, E. (2006). Glass Foams. Cellular Ceramics: Structure, Manufacturing, Properties and Applications, 158–176.
DOI 10.1002/3527606696.ch2g

Silva, R. V., de Brito, J., Lynn, C. J., & Dhir, R. K. (2017). Use of municipal solid waste incineration bottom ashes in alkali-activated materials, ceramics and granular applications: A review. Waste Management, 68, 207–220.
DOI 10.1016/j.wasman.2017.06.043

Silva, R. V., de Brito, J., Lynn, C. J., & Dhir, R. K. (2019). Environmental impacts of the use of bottom ashes from municipal solid waste incineration: A review. Resources, Conservation and Recycling, 140(June 2018), 23–35.
DOI 10.1016/j.resconrec.2018.09.011

Tillman, D. A., Vick, K. M., & Rossi, A. J. (1989). Incineration of Municipal and Hazardous Solid Wastes. Incineration of Municipal and Hazardous Solid Wastes (Academic P). Elsevier.
DOI 10.1016/B978-0-12-691245-6.X5001-9

Watanabe, T., Hashimoto, H., Hayashi, M., & Nagata, K. (2008). Effect of Alkali Oxides on Crystallization in CaO–SiO2–CaF2 Glasses. ISIJ International, 48(7), 925–933.
DOI 10.2355/isijinternational.48.925

Zhang, Y. J., Zhao, Y. L., Li, H. H., & Xu, D. L. (2008). Structure characterization of hydration products generated by alkaline activation of granulated blast furnace slag. Journal of Materials Science, 43(22), 7141–7147.
DOI 10.1007/s10853-008-3028-9