an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU


  • Daniel Vollprecht - Montanuniversität Leoben, Austria
  • Christin Bobe - Department of Environment, Ghent University, Belgium
  • Roman Stiegler - Montanuniversitat Leoben, Austria
  • Ellen van de Vijver - Department of Environment, Ghent University, Belgium
  • Tanja Wolfsberger - Montanuniversität Leoben, Austria
  • Bastian Küppers - Montanuniversität Leoben, Austria
  • Robert Scholger - Chair of Applied Geophysics, Montanuniversität Leoben, Austria


Released under CC BY-NC-ND

Copyright: © 2019 CISA Publisher


Ferrous metals are a main recyclable waste fraction in Enhanced Landfill Mining (ELFM) projects. However, prior to mining, the metal content of municipal solid waste (MSW) landfills is unknown. We investigate if the metal content of MSW landfills can be estimated by inverse modeling of geophysical measurements as the magnetic properties of the subsurface are particularly sensitive to ferromagnetic metal enrichments. We conducted magnetic total-field measurements on a MSW landfill in Austria and estimated the bulk magnetic susceptibility (MS) of the subsurface by inverse modelling. For validation of the subsurface MS values, 32 drill-core samples from multiple locations and depths within the landfill were obtained and manually sorted into 12 waste fractions including ferrous metals (2.3 ± 1.4 wt.%, 1σ). To investigate if bulk MS could be accurately predicted from inverse modeling when the exact composition of the waste is known, the MS of iron and other expected waste fractions were investigated in laboratory analysis using reference samples from waste treatment plants and another ELFM project. Laboratory analyses partly yielded significantly larger MS values for waste materials than those given for virgin materials in literature. The bulk MS for each sample from the ELFM project was computed using a weighted mean with respect to the waste composition derived from manual sorting. The bulk MS derived from inverse modelling of the field data (0.06 to 0.11 SI) exceeded the bulk MS derived from the material composition of waste samples and the MS values of reference samples (0.01 to 0.05 SI).


Editorial History

  • Received: 07 Jun 2019
  • Revised: 09 Sep 2019
  • Accepted: 11 Sep 2019
  • Available online: 23 Dec 2019


Austrian Federal Ministry of Agriculture, F. E. (2017). Federal Waste Management Plan

Bavusi, M., Rizzo, E., & Lapenna, V. (2006). Electromagnetic methods to characterize the Savoia di Lucania waste dump (Southern Italy). Environmental Geology, 51, pp. 301-308

Bernstone, C., Dahlin, T., Ohlsson, T., & Hogland, W. (2000). DC-resistivity mapping of internal landfill structures: two pre-excavation surveys. Environmental Geology, 39(3-4), pp. 360-371

Bobe, C., Van De Vijver, E., & Van Meirvenne, M. (2018). Exploring the potential of electromagnetic surface measurements for the characterisation of industrial landfills. Proceedings of the 4th International Academic Symposium on Enhanced Landfill Mining (ELFM IV), (pp. 45-50). Mechelen

Burnley, S. (2007). A review of municipal solid waste composition in the United Kingdo. Waste Management, 27(10), pp. 1274-1285

Cardarelli, E., & di Filippo, G. (2004). Integrated geophysical surveys on waste dumps: evaluation of physical parameters to characterize an urban waste dump (four cases studies in Italy). Waste Management and Research, 22, pp. 390-402

di Maio, R., Fais, S., Ligas, P., Piegari, E., Raga, R., & Cossu, R. (2018). 3D geophysical imaging for site-specific characterization plan of an old landfill. Waste Management, 76, pp. 629-642

Dobrin, M., & Savit, H. (1960). Introduction to Geophysical Prospecting. New York: McGraw Hill

Dumont, G., Robert, T., Marck, N., & Nguyen, F. (2017). Assessment of multiple geophysical techniques for the characterization of municipal waste deposit sites. Journal of Applied Geophysics, 145, pp. 74-83

Fettweis, G., Brandstätter, W., & Hruschka, F. (1985). Was ist Lagerstättenbonität? Mitteilungen der Österreichischen Geologischen Gesellschaft, 78, pp. 23-40

García López, C., Ni, A., Hernández Parrodi, J., Pretz, T., Raulf, K., & Küppers, B. (2019). Characterization of landfill mining material after ballistic separation to evaluate material and energy recovery potential. Volume 08 - December 2019, Detritus - Multidisciplinary Journal for Waste Resources and residues

Grellier, S., Reddy, K., Gangathulasi, J., Adib, R., & Peters, C. (2007). Correlation between Electrical Resistivity and Moisture Content of Municipal Solid Waste in Bioreactor Landfill. Geoenvironmental Engineering, 226(11), pp. 1-14

Hermozilha, H., Grangeia, C., & Senos Matias, M. (2010). An integrated 3D constant offset GPR and resistivity survey on a sealed landfill - Ilhavo, NW Portugal. Journal of Applied Geophysics, 70, pp. 58-71

Hernández Parrodi, J. C., Höllen, D., & Pomberger, R. (2018). Characterization of Fine Fractions from Landfill Mining: A Review of Previous Investigations. Detritus, 2, pp. 46 – 62

Jones, P., Geysen, D., Tielemans, Y., van Passel, S., Pontikes, Y., Blanpain, B., . . . Hoekstra, N. (2013). Enhanced Landfill Mining in view of multiple resource recovery: a critical review. Journal of Cleaner Production, 55, pp. 45-55

Knödel, K., Krummel, H., & Lange, G. (2005). Handbuch zur Erkundung des Untergrundes von Deponien und Altlasten (Vol. 3). Berlin, Heidelberg: Springer

Krook, J., Svensson, N., & Eklund, M. (2012). Landfill mining: A critical review of two decades of research. Waste Management, 32, pp. 513-520

Leikam, K., & Stegmann, R. (1999). Influence of mechanical-biological pretreatment of municipal solid waste on landfill behaviour. Waste Management & Research, 17, pp. 424-429

Lin, S., & Chang, C. (2000). Treatment of landfill leachate by combined electro-Fenton oxidation and sequencing batch reactor method. Water Research, 34(17), pp. 4243-4249

McCann, D. (1994). Geophysical methods for the assessment of landfill and waste disposal sites: a review. Land Contamination and Reclamation, 2, pp. 73-83

Meju, M. (2000). Geoelectrical investigation of old/abandoned, covered landfill sites in urban areas: model development with a genetic diagnosis approach. Journal of Applied Geophysics, 44, pp. 115-150

Mor, S., Ravindra, K., de Visscher, A., Dahiya, R., & Chandra, A. (2006). Municipal solid waste characterization and its assessment for potential methane generation: A case study. Science of the Total Environment(371), pp. 1-10

Muras, A., Küppers, B., Höllen, D., & Rothschedl, R. (2018). Landfill Mining of a Mixed Municipal Solid Waste and Commercial Waste Landfill: Application of Existing Processing Technology – Opportunities and Limitations. 4th International Symposium on Enhanced Landfill Mining (ELFM IV)

Nave, C. (2019, 5 29). HyperPhysics. Retrieved from

Orlando, L., & Marchesi, E. (2001). Georadar as a tool to identify and characterise solid waste dump deposits. Journal of Applied Geophysics, 48, pp. 163-174

Phaovibul, O., Loboda-Cackovic, J., Hosemann, R., & Balta-Calleja, F. (1973). Detection of “Memory” Effects in Polythethylene by Magnetic Susceptibility. Journal of Polymer Science: Polymer Physics Edition, 11, pp. 2273-2282

Porsani, J., Filho, W., Elis, V., Shimeles, F., Dourado, J., & Moura, H. (2004). The use of GPR and VES in delineating a contamination plume in a landfill site: a case study in SE Brazil. Journal of Applied Geophysics, 55, pp. 199-209

Prezzi, C., Orgeira, M., Ostera, H., & Vasquez, C. (2005). Ground magnetic survey of a municipal solid waste landfill: Pilot study in Argentina. Environmental Geology, 47, pp. 889-897

Rakos, M., Murin, J., Kafka, D., Varga, Z., & Olcak, D. (1984). NMR and Magnetic Susceptibility Study of Woods and Cellulose. Czechoslovakian Journal of Physics B, 34(4), pp. 322-340

Savage, G., Golueke, C., & von Stein, E. (1993). Landfill Mining. Past and present. Biocycle, 34(5), pp. 58-61

Schenck, J. (1996). The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Medical Physics, 23(6), pp. 815-850

Selwood, P., Pardo, J., & Pace, A. (1950). Magnetic Anisotropy of Dimethyl Terephthalate and Polyethylene Terephthalate. Journal of the American Chemical Society, 72(3), pp. 1269-1276

Soupios, P., Papadopoulos, I., Kouli, M., Georgaki, I., Vallianatos, F., & Kokkinou, E. (2007). Investigation of waste disposal areas using electrical methods: a case study from Chania, Crete, Greece. Environmental Geology, 51(7), pp. 1249-1261

Van De Vijver, E., & Van Meirvenne, M. (2016). Delving into the potential of multi-receiver electromagnetic induction surveying for enhanced landfill exploration in view of ELFM. Proceedings of the Third International Academic Symposium on Enhanced Landfill Mining (ELFM III), (pp. 175-187). Lisboa

Winterstetter, A., Laner, D., Rechberger, H., & Fellner, J. (2015). Framework for the evaluation of anthropogenic resources: A landfill mining case study – Resource or reserve? Resources, Conservation and Recycling, 96, pp. 19-30

Wolfsberger, T., Aldrian, A., Sarc, R., Hermann, R., Höllen, D., Budischowsky, A., Pomberger, R. (2015). Landfill mining: Resource potential of Austrian landfills - Evaluation and quality assessment of municipal solid waste by chemical analyses. Waste Management and Research, 33(11), pp. 962-974

Yannah, M., Martens, K., van Camp, M., & Walraevens, K. (2019). Geophysical exploration of an old dumpsite in the perspective of enhanced landfill mining in Kermt area, Belgium. Bulletin of Engineering Geology and the Environment, 78, pp. 55-67

Zacharof, A. &. (2004). Stochastic modelling of landfill processes incorporating waste heterogeneity and data uncertainty. Waste Management, 24, pp. 241-250

Zanetti, M., & Godio, A. (2006). Recovery of foundry sands and iron fractions from an industrial waste landfill. Resources, Conservation and Recycling, 48, pp. 396-411