an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU

RECOVERY OF METALS FROM ELECTROACTIVE COMPONENTS OF SPENT NI-MH BATTERIES AFTER LEACHING WITH FORMIC ACID

  • Pedro Rosário Gismonti - Department of Analytical Chemstry, Institute of Chemstry, Federal University of Rio de Janeiro, Brazil
  • Jéssica Frontino Paulino - Department of Analytical Chemstry, Institute of Chemstry, Federal University of Rio de Janeiro, Brazil
  • Julio Afonso - Department of Analytical Chemstry, Institute of Chemstry, Federal University of Rio de Janeiro, Brazil

Released under CC BY-NC-ND

Copyright: © 2020 CISA Publisher


Abstract

this work describes a route for recovering nickel, cobalt, iron, zinc and lanthanides from spent nickel-metal hydride batteries. Formic acid was used as leachant. Experiments were run at 25-50°C for 1-4 h. Under the best conditions leaching yields surpassed 99 wt.%, except for iron. The insoluble matter contains almost solely iron as iron(III) basic formate. The leachate went through six separation procedures, combining solvent extraction with D2EHPA as extractant, and precipitation reactions. Fe2+ and Zn2+ were extracted together (> 99 wt.%) from the original leachate (pH ~1.5). Yttrium and lanthanides were precipitated as oxalates directly from the raffinate (> 99.9 wt.%) upon addition of sodium oxalate. In the next steps, Mn2+ and Co2+ were extracted with D2EHPA at buffered pH (3 and ~4.8, respectively), after adding NaOHaq. About 10 wt.% of leached Ni2+ was coextracted with Co2+. The remaining Ni2+ was precipitated from the raffinate after addition of aqueous sodium oxalate at pH 6. After precipitation of Al3+ upon addition of NaOHaq. until pH ~8, sodium formate was recovered after slow evaporation of the final aqueous solution at 60oC. It contains ~90 wt.% of the formate present in the leachant.

Keywords


Editorial History

  • Received: 17 Aug 2020
  • Revised: 01 Feb 2021
  • Accepted: 16 Feb 2021
  • Available online: 31 Mar 2021

References

Almeida, J. R., Moura, M. N., Barrada, R. V., Barbieri, E. M. S., Carneiro, M. T. W. D., Ferreira, S. A. D., Lelis, M. F. F., Freitas, M. B. J. G. & Brandão, G. P., 2019. Composition analysis of the cathode active material of spent Li-ion batteries leached in citric acid solution: A study to monitor and assist recycling processes. Sci. Total Environ., 685, 589–595.
DOI 10.1016/j.scitotenv.2019.05.243

Alonso, A.R., Pérez, E.A., Lapidus, G.T. & Luna-Sánchez, R.M., 2017. Hydrometallurgical process for rare earth elements recovery from spent Ni-MH batteries. Can. Metall. Q., 54, 310–317.
DOI 10.1179/1879139515Y.0000000013

Ayanda, O. S., Adekola, F. A., Baba, A. A., Ximba, B. J. & Fatoki, O. S., 2013. Application of Cyanex® extractant in Cobalt/Nickel separation process by solvent extraction. Int. J. Phys. Sci., 8, 89-97.
DOI 10.5897/ijps12.135

Balesini, A. A., Razavizadeh, H. & Zakeri, A., 2011. Solvent Extraction of Zinc from Acidic Solution Obtained from Cold Purification Filter Cake of Angouran Mine Concentrate Using D2EHPA. Iran. J. Chem. Chem. Eng., 8, 43-47. http://www.ijche.com/article_10282_813d0dccf4d682c66c2d73e654476a86.pdf

Barik, S. P., Prabaharan, G. & Kumar, L., 2017. Leaching and separation of Co and Mn from electrode materials of spent lithium-ion batteries using hydrochloric acid: Laboratory and pilot scale study. J. Cleaner Prod., 147, 37-43.
DOI 10.1016/j.jclepro.2017.01.095

Bratsch, S. G., 1989. Standard Electrode Potentials and Temperature Coefficients in Water at 298.5 K. J. Phys. Chem. Ref. Data, 18, n. 01.
DOI 10.1063/1.555839

Chen, X., Guo, C., Ma, H., Li, J., Zhou, T., Cao, L. & Kang, D., 2018. Organic reductants based leaching: A sustainable process for the recovery of valuable metals from spent lithium ion batteries. Waste Manage., 75, 459–468.
DOI 10.1016/j.wasman.2018.01.021

Chiu, K. L., Shen, Y. H., Chen, Y. H. & Shih, K. Y., 2019. Recovery of Valuable Metals from Spent Lithium Ion Batteries (LIBs) Using Physical Pretreatment and a Hydrometallurgy Process. Adv. Mater., 8, 12-20.
DOI 10.11648/j.am.20190801.12

Colmenares, A. Z., Salaverría, J. D. & Delvasto, P., 2018. Characterization of the chemical compounds obtained after using acetic acid as leaching agent in the hydrometallurgical treatment of spent Ni-MH batteries. Revista Producción + Limpia, 13, 19-29.
DOI 10.22507/pml.v13n1a2

Dhiman, S. & Gupta, B., 2019. Partition studies on cobalt and recycling of valuable metals from waste Li-ion batteries via solvent extraction and chemical precipitation. J. Cleaner Prod., 225, 820-832.
DOI 10.1016/j.jclepro.2019.04.004

Feigl, F., 1958. Spot Tests in Inorganic Analysis. Amsterdam: Elsevier

Fernandes, A., Afonso, J. C. & Dutra, A. J. B., 2013. Separation of nickel(II), cobalt(II) and lanthanides from spent Ni-MH batteries by hydrochloric acid leaching, solvent extraction and precipitation. Hydrometallurgy, 133, 37-43.
DOI 10.1016/j.hydromet.2012.11.017

Fernandes, A., Afonso, J. C. & Dutra, A. J. B., 2012. Hydrometallurgical route to recover nickel, cobalt and cadmium from spent Ni-Cd batteries. J. Power Sources 220, 286-291.
DOI 10.1016/j.jpowsour.2012.08.011

Fila, D., Hubicki, Z. & Kołodyńska, D., 2019. Recovery of metals from waste nickel-metal hydride batteries using multifunctional Diphonix resin. Adsorption, 25, 367–382.
DOI 10.1007/s10450-019-00013-9

Fu, Y., He, Y., Chen, H., Ye, C., Lu, Q., Li, Xie, W. & Wang, J., 2019. Effective leaching and extraction of valuable metals from electrode material of spent lithium-ion batteries using mixed organic acids leachant. J. Ind. Eng. Chem., 79, 154–162.
DOI 10.1016/j.jiec.2019.06.023

Gaines, L., 2018. Lithium-ion battery recycling processes: Research towards a sustainable course. Sust. Mater. Technol., 17, e00068.
DOI 10.1016/j.susmat.2018.e00068

Gao, W., Liu, C., Cao, H., Zheng, X., Lin, X., Wang, H., Zhang, Y. & Sun, Z., 2018. Comprehensive evaluation on effective leaching of critical metals from spent lithium-ion batteries. Waste Manage., 75, 477–485.
DOI 10.1016/j.wasman.2018.02.023

Hayrapetyan, S. S.; Mangasaryan, L. G. Tovmasyan, M. R. & Khachatryan, H. G., 2006. Precipitation of aluminum hydroxide from sodium aluminate, by treatment with formalin, and preparation of aluminum oxide. Acta Chromatographica 16, 192-203. http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-article-BAT3-0037-0020

Hietala, J., Vuori, A., Johnsson, P., Pollari, I., Reutemann, W. & Kieczka, H., 2016. Formic acid. In Ullmann’s Encyclopaedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA,
DOI 10.1002/14356007.a12_013.pub3

Ibiapina, V. F., Florentino, U. S., Afonso, J. C., Gante, V., Vianna, C. A. & Mantovano, J. L., 2018. Processing of spent zinc-MnO2 dry cells in various acidic media. Quim. Nova 41, 176-183.
DOI 10.21577/0100-4042.20170162

Janiszewska, M., Markiewicz, A. & Regel-Ros, M., 2019. Hydrometallurgical separation of Co(II) from Ni(II) from model and real waste solutions. J. Cleaner Prod., 228, 746-754.
DOI 10.1016/j.jclepro.2019.04.285

Josso, P., Roberts, S., Teagle, D. A. H., Pourret, O., Herrington, R. & Albarran, C. P. L., 2018. Extraction and separation of rare earth elements from hydrothermal metalliferous sediments. Miner. Eng., 118, 106-121.
DOI 10.1016/j.mineng.2017.12.014

Korkmaz, K., Alemrajabi, M., Rasmuson, Å. C. & Forsberg, K. M., 2018. Sustainable hydrometallurgical recovery of valuable elements from spent nickel–metal hydride HEV batteries. Metals, 8, 1062.
DOI 10.3390/met8121062

Kulyakthin, S. & Pastye, A. K., 2021. Can calorimetry be used to measure the melting rate of deicers? Cold Reg. Sci. Technol., 181, article 103170.
DOI 10.1016/j.coldregions.2020.103170

Liu, X., Li, S., Liu, Y. & Cao, Y., 2015. Formic acid: A versatile renewable reagent for green and sustainable chemical synthesis. Chinese J. Catal., 36, 1461–1475.
DOI 10.1016/S1872-2067(15)60861-0

Lucas, J., Lucas, P., Le Mercier, T., Rollat, A. & Davenport, W., 2015. Rare earths in rechargeable batteries. Rare Earths, 167-180 (Chapter 10).
DOI 10.1016/B978-0-444-62735-3.00010-3

Lurie, J., 1978. Handbook of Analytical Chemistry, 3rd ed. Mir, Moscow

Meshram, P., Pandey, B. D. & Mankhand, T. R., 2016. Process optimization and kinetics for leaching of rare earth metals from the spent Ni–metal hydride batteries. Waste Manage., 51, 196-203.
DOI 10.1016/j.wasman.2015.12.018

Meshram, P., Somani, H., Pandey, B. D., Mankhand, T. R., Deveci, H. & Abhilash, 2017. Two stage leaching process for selective metal extraction from spent nickel metal hydride batteries. J. Cleaner Prod., 157, 322-332.
DOI 10.1016/j.jclepro.2017.04.144

Meshram, P., Pandey, B. D. & Abhilash, 2019. Perspective of availability and sustainable recycling prospects of metals in rechargeable batteries – A resource overview. Resour. Policy, 60, 9-22.
DOI 10.1016/j.resourpol.2018.11.015

Meshram, P., Mishra, & Sahu, R., 2020. Environmental impact of spent lithium ion batteries and green recycling perspectives by organic acids: a review. Chemosphere, 242, 125291.
DOI 10.1016/j.chemosphere.2019.125291

Musariri, B., Akdogan, G., Dorfling, C. & Bradshaw, S., 2019. Evaluating organic acids as alternative leaching reagents for metal recovery from lithium ion batteries. Miner. Eng., 137, 108-117.
DOI 10.1016/j.mineng.2019.03.027

Oliveira, U. C. M., Rodrigues, G. D., Mageste, A. B. & Lemos, L. R., 2017. Green selective recovery of lanthanum from Ni-MH battery leachate using aqueous two-phase systems. Chem. Eng. J., 322, 346–352.
DOI 10.1016/j.cej.2017.04.044

Paulino, J. F., Neumann, R., Afonso, J. C., 2018. Production of sodium and aluminum chemicals and recovery of rare earth elements after leaching cryolite from Pitinga mine (Amazonas - Brazil) with sulfuric acid. Hydrometallurgy, 180, 254-261.
DOI 10.1016/j.hydromet.2018.08.004

Reutmann, W., Kieczka, H., 2012. Formic Acid. Ullmann’s Encyclopedia of Industrial Chemistry. Weinhein: Wiley-VCH Verlag, vol. 16, p. 13-33.
DOI 10.1002/14356007.a12_013.pub2

Ritcey, G. M. & Ashbrook, A. W., 1984. Principles and Applications to Process Metallurgy (Part I). New York, Elsevier Science Publishers

Shih, Y. J., Chien, S. K., Jhang, S. R. & Lin, Y. C., 2019. Chemical leaching, precipitation and solvent extraction for sequential separation of valuable metals in cathode material of spent lithium ion batteries. J. Taiwan Inst. Chem. E., 100, 151–159.
DOI 10.1016/j.jtice.2019.04.017

Santos, V. E. O., Celante, V. G., Lelisa, M. F. F. & Freitas, M. B. J. G., 2014. Método hidrometalúrgico para reciclagem de metais terras raras, cobalto, níquel, ferro e manganês de eletrodos negativos de baterias exauridas de Ni-MH de telefone celular. Quim. Nova, 37, 22-26.
DOI 10.1590/S0100-40422014000100005

Silva, R. G., Afonso, J. C. & Mahler, C. F., 2018. Acidic leaching of Li-ion batteries. Quim. Nova, 41, 581-586.
DOI 10.21577/0100-4042.20170207

Turek, A. S., 2018. Hydrometallurgical recovery of metals: Ce, La, Co, Fe, Mn, Ni and Zn from the stream of used Ni-MH cells. Waste Manage., 77, 213-219.
DOI 10.1016/j.wasman.2018.03.046

Valadares, A., Valadares, C. F., Lemos, L. R., Mageste, A. B. & Rodrigues, G. D., 2018. Separation of cobalt and nickel in leach solutions of spent nickel-metal hydride batteries using aqueous two-phase systems (ATPS). Hydrometallurgy, 181, 180-188.
DOI 10.1016/j.hydromet.2018.09.006

van der Voorde, I., Pinoy, L., Courtijn, E., Verpoort, F., 2006. Equilibrium Studies of Nickel(II), Copper(II), and Cobalt(II) Extraction with Aloxime 800, D2EHPA, and Cyanex Reagents. Solvent Extr. Ion Exc., 24, 893-914.
DOI 10.1080/07366290600952717

Virolainen, S., Ibana, D. & Paatero, E., 2011. Recovery of indium from indium-tin-oxide by solvent extraction. Hydrometallurgy, 107, 56-61.
DOI 10.1016/j.hydromet.2011.01.005

Vogel, A. I., 1981. Química Analítica Qualitativa, 5ª ed. São Paulo: Mestre Jou

Wang, S., Wang, C., Lai, F., Yan, F. & Zhang, Z., 2020. Reduction-ammoniacal leaching to recycle lithium, cobalt, and nickel from spent lithium-ion batteries with a hydrothermal method: Effect of reductants and ammonium salts. Waste Manage., 102, 122–130.
DOI 10.1016/j.wasman.2019.10.017

Xie, F., Zhang, T.A., Dreisinger, D., Doyle, F., 2014. A critical review on solvent extraction of rare earths from aqueous solutions. Miner. Eng., 56, 10-28.
DOI 10.1016/j.mineng.2013.10.021

Yang, X., Zhang, J. & Fang, X., 2014. Rare earth element recycling from waste nickel metal hydride batteries. J. Hazard. Mat., 279, 384–388.
DOI 10.1016/j.jhazmat.2014.07.027

Yang, L., Yang, L., Xu, G., Feng, Q., Li, Y., Zhao, E., Ma, J., Fan, S. & Li, X., 2019. Separation and recovery of carbon powder in anodes from spent lithium-ion batteries to synthesize graphene. Sci. Rep., 9, 9823.
DOI 10.1038/s41598-019-46393-4