an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU

PRODUCTION OF BIO-DEGRADABLE PLASTICS USING DIFFERENT WASTE RESOURCES BY STREPTOMYCES GEYSIRIENSIS SP. VITJK02

  • Jyothirmayee Kola Pratap - School of Biosciences &Technology, Vellore Institute of Technology, India
  • Krishnan Kannabiran - School of Biosciences &Technology, Vellore Institute of Technology, India

Access restricted to subscribed members only

Released under All rights reserved

Copyright: © 2025 CISA Publisher


Abstract

Plastic polymers are invariably used every day for multiple applications causing huge environmental pollution globally. Biopolymers are biodegradable and considered to be a better alternative to synthetic plastics. This study explores the microbial production of Poly 3-hydroxyalkanoates (PHAs/ Poly 3-hydroxybutyrates (PHBs) using low-cost waste substrate. The polymer of hydroxyalkanoate is produced as intracellular granules, accumulates inside and serves as a source of energy for microorganisms. PHA-producing bacteria were isolated and screened using the Nile red and Sudan black B staining technique. Agro-industrial wastes like Rice bran. Sesame seed oil cake, used cooking oil, and glucose were used as carbon sources. The PHA-producing strain was characterized and identified by 16S rRNA partial genome sequencing. The extracted PHA was analyzed for PHA and PHB monomeric compounds by GC-MS analysis. PHA-producing isolate was identified as Streptomyces species and named as Streptomyces geysiriensis sp. VITJK02 by molecular taxonomic characterization. Among the carbon sources used rice bran served as a better carbon source for PHA production, and the yield was calculated to be 37.55%. Octadecanoic acid, 3-hydroxy-methyl ester, 2-butenoic acid, 1-methyl ethyl ester, 9-hexadecenoic acid, butanoic acid, 2,7-dimethyl oct-7-en-5yn-4-yl ester, butanedioic acid, dimethyl ester, pentadecanoic acid, and valeric acid, 2-tetradecyl ester were a few of the major PHA monomeric compounds observed in our study. Since PHA/PHB bioplastics are a better alternative to petroleum hydrocarbon-based synthetic plastic polymers, cheap household wastes can be used to produce PHA to minimize the cost.

Keywords


Editorial History

  • Received: 23 May 2025
  • Revised: 09 Jul 2025
  • Accepted: 29 Jul 2025
  • Available online: 09 Sep 2025

References

Adnan, M., Siddiqui, A.J., Ashraf, S.A., Snoussi, M., Badraoui, R., Ibrahim, A.M., Alreshidi, M., Sachidanandan, M. & Patel, M. (2023). Characterization and process optimization for enhanced production of polyhydroxybutyrate (PHB)-based biodegradable polymer from Bacillus flexus isolated from municipal solid waste landfill site. Polymers, 15(6),1407.
DOI 10.3390/polym15061407

Al-Hamdani, M.A. (2016). Polyhydroxyalkanoate Production by Streptomyces plumbiresistensCCNWHX 13-160T. Journal of Biology, Agriculture and Healthcare, 6,12. ISSN 2225-093X

Alsafadi, D., Alhesan, J.S.A., Mansoura, A. & Oqdeha, S. (2023). Production of polyhydroxyalkanoate from sesame seed wastewater by sequencing batch reactor cultivation process of Haloferax mediterranei. Arabian Journal of Chemistry,16(4), 104584.
DOI 10.1016/j.arabjc.2023.104584

Arriaga, M.; Pinar, F.J.; Izarra, I.; Amo, J.d.; Vicente, J.; Fernández-Morales, F.J.; Mena, J. (2025). Valorization of agri-food waste into PHA and bioplastics: From waste selection to transformation. Applied Sciences, 15, 1008.
DOI 10.3390/app15031008

Bergey, D.H. (1994). Bergey’s manual of determinative bacteriology. Lippincott Williams & Wilkins

Castilho, L.R., Mitchell, D.A. & Freire, D.M., (2009). Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation. Bioresource Technology, 100(23),5996-6009.
DOI 10.1016/j.biortech.2009.03.088

Chen, S., Rotaru, A.-E., Shrestha, P.M., Malvankar, N.S., Liu, F., Fan, W., Nevin, K.P., Lovley, D.R., 2014. Promoting interspecies electron transfer with biochar. Sci. Rep. 4, 5019.
DOI 10.1038/srep05019

Danial, A.W., Hamdy, S.M., Alrumman, S.A., Gad El-Rab, S.M., Shoreit, A.A. & Hesham, A.E.L. (2021). Bioplastic production by Bacillus wiedmannii AS-02 OK576278 using different agricultural wastes. Microorganisms, 9(11), 2395.
DOI 10.3390/microorganisms9112395

Gómez Cardozo, J.R., Mora Martínez, A.L., Yepes Pérez, M. and Correa Londoño, G.A., 2016. Production and characterization of polyhydroxyalkanoates and native microorganisms synthesized from fatty waste. International Journal of Polymer Science, 2016(1), p.6541718.
DOI 10.1155/2016/6541718

Hahn, S.K., Chang, Y.K., Kim, B.S. & Chang, H.N. (1994). Optimization of microbial poly (3‐hydroxybutyrate) recover using dispersions of sodium hypochlorite solution and chloroform. Biotechnology Bioengineering,44(2),256-261.
DOI 10.1002/bit.260440215

Hamdy, S.M., Danial, A.W., Gad El-Rab, S.M., Shoreit, A.A. & Hesham, A.E.L., (2022). Production and optimization of bioplastic (Polyhydroxybutyrate) from Bacillus cereus strain SH-02 using response surface methodology. BMC Microbiology, 22(1), 183.
DOI 10.1186/s12866-022-02593-z

Herrera, D.A.G., Mojicevic, M., Pantelic, B., Joshi, A., Collins, C., Batista, M., Torres, C., Freitas, F., Murray, P., Nikodinovic-Runic, J. and Brennan Fournet, M., 2023. Exploring microorganisms from plastic-polluted sites: unveiling plastic degradation and PHA production potential. Microorganisms, 11(12), 2914

Jamil, K.B., (2022). Synthesis of environmental bioplastic polyhydroxyalkanoate (PHA) from waste glycerol, palm oil and different concentrations of glucose by a new strain Propionibacterium sp. Iraqi Journal of Industrial Research, 9(2), 175-186.
DOI 10.53523/ijoirVol9I2ID203

Kalia, V.C., Lal, S. & Cheema, S. (2007). Insight into the phylogeny of polyhydroxyalkanoate biosynthesis: horizontal gene transfer. Gene, 389(1),19.
DOI 10.1016/j.gene.2006.09.010

Khanna, S., & Srivastava, A.K (2005). Recent advances in microbial polyhydroxyalkanoates. Process Biochemistry, 40(2), 607-619.
DOI 10.1016/j.procbio.2004.01.053

Koller, M. (2018). Chemical and biochemical engineering approaches in manufacturing polyhydroxyalkanoate (PHA) biopolyesters of tailored structure with focus on the diversity of building blocks. Chemical and Biochemical Engineering Quaterly, 32(4), 413–438.
DOI 10.15255/CABEQ.2018.1385

Kouřilová, X., Schwarzerová, J., Pernicová, I., Sedlář, K., Mrázová, K., Krzyžánek, V., Nebesářová, J. & Obruča, S. (2021). The first insight into polyhydroxyalkanoates accumulation in multi-extremophilic Rubrobacter xylanophilus and Rubrobacter spartanus. Microorganisms, 9(5),909.
DOI 10.3390/microorganisms9050909

Kieser, T., Bibb, M.J., Buttner, M.J., Chater, K.F. & Hopwood, D.A., (2000). Practical Streptomyces genetics: John Innes Foundation. Norwich Research park, Colney, pp-44-61

Krishnan, S., Chinnadurai, G.S. & Perumal, P. (2017). Polyhydroxybutyrate by Streptomyces sp.: Production and characterization. International Journal of Biological Macromolecules, 104, 1165-1171.
DOI 10.1016/j.ijbiomac.2017.07.028

Krishnan, S., Chinnadurai, G.S., Ravishankar, K., Raghavachari, D. & Perumal, P., (2021). Statistical augmentation of polyhydroxybutyrate production by Isoptericola variabilis: Characterization, moulding, in vitro cytocompatibility and biodegradability evaluation. International Journal Biological Macromolecules, 166,80-97.
DOI 10.1016/j.ijbiomac.2020.10.089

Kumar, V., Thakur, V., Ambika, Kumar, S. & Singh, D. (2018). Bioplastic reservoir of diverse bacterial communities revealed along altitude gradient of Pangi-Chamba trans-Himalayan region. FEMS Microbiology Letters, 365(14), 144.
DOI 10.1093/femsle/fny144

Liu, W.T., Hanada, S., Marsh, T.L., Kamagata, Y. & Nakamura, K. (2002). Kineosphaera limosa gen. nov., sp. nov., a novel Gram-positive polyhydroxyalkanoate-accumulating coccus isolated from activated sludge. International Journal of Systematic Evolution. 52(5), 1845-1849.
DOI 10.1099/ijs.0.02233-0

Mandal, M.,Anamika Roy, Debasis Mitra, Abhijit Sarkar, (2024). Possibilities and prospects of bioplastics production from agri-waste using bacterial communities: Finding a silver-lining in waste management, Current Research in Microbial Sciences, 7, 100274.
DOI 10.1016/j.crmicr.2024.100274

Manna, A., Banerjee, R. and Paul, A.K., 1999. Accumulation of poly (3-hydroxybutyric acid) by some soil Streptomyces. Current Microbiology, 39,153-158.
DOI 10.1007/s002849900437

Malviya, R., Sundram, S., Fuloria, S., Subramaniyan, V., Sathasivam, K.V., Azad, A.K., Sekar, M., Kumar, D.H., Chakravarthi, S., Porwal, O. and Meenakshi, D.U., 2021. Evaluation and characterization of tamarind gum polysaccharide: the biopolymer. Polymers, 13(18), 3023.
DOI 10.3390/polym13183023

Matias, F., Bonatto, D., Padilla, G., Rodrigues, M.F.D.A. & Henriques, J.A.P. (2009). Polyhydroxyalkanoates production by actinobacteria isolated from soil. Canadian Journal of Microbiology, 55(7), 790-800.
DOI 10.1139/W09-029

Nandish, G., Akarsh, S., Manjunatha, D., Sowmya, H. V. & Thippeswamy, B. (2023). Utilization of agro-industrial wastes as raw materials for the biosynthesis of polyhydroxy butyrate biopolymer from Bacillus paramycoides strain KUMBNGBT-33. Journal of Applied Biology & Biotechnology,11(4), 178-184.
DOI 10.7324/JABB.2023.11514

Narayanan, M., Kumarasamy, S., Kandasamy, G., Kandasamy, S., Narayanamoorthy, B., Shanmugam, S., Alharbi, S.A., Almoallim, H.S. & Pugazhendhi, A. (2022). A novel insight into the fabrication of polyhydroxyalkanoates from actinobacteria Streptomyces toxytricini D2: Screening, optimization, and biopolymer characterization. Journal of Polymers and the Environment, 1-14.
DOI 10.1007/s10924-021-02336-7

Narancic, T., Cerrone, F., Beagan, N. & O’Connor, K.E. (2020) Recent advances in bioplastics: Application and biodegradation. Polymers, 12, 920.
DOI 10.3390/polym12040920

Oh, Y.H., Lee, S.H., Jang, Y.A., Choi, J.W., Hong, K.S., Yu, J.H., Shin, J., Song, B.K., Mastan, S.G., David, Y. & Baylon, M.G. (2015). Development of rice bran treatment process and its use for the synthesis of polyhydroxyalkanoates from rice bran hydrolysate solution. Bioresource Technology, 181, 283-290.
DOI 10.1016/j.biortech.2015.01.075

Ojha, N. & Das, N. (2020). Process optimization and characterization of polyhydroxyalkanoate copolymers produced by marine Pichia kudriavzevii VIT-NN02 using banana peels and chicken feather hydrolysate. Biocatalysis and Agricultural Biotechnology, 27,101616.
DOI 10.1016/j.bcab.2020.101616

Olanrewaju, O.S. & Babalola, O.O. (2019). Streptomyces: implications and interactions in plant growth promotion. Applied Microbiology and Biotechnology, 103, 1179-1188.
DOI 10.1007/s00253-018-09577-y

Oliveira, J., Almeida, P.L., Sobral, R.G., Lourenço, N.D. & Gaudêncio, S.P. (2022). Marine-derived actinomycetes: biodegradation of plastics and formation of PHA bioplastics—A circular bioeconomy approach. Marine Drugs, 20(12), 760.
DOI 10.3390/md20120760

Pratap, J.K. & Krishnan, K. (2023). Microbial production of polyhydroxyalkonates (Bioplastic) using cheap household waste resources and their biomedical applications: A systematic review. Letters in Applied NanoBioscience, 12, 174.
DOI 10.33263/LIANBS124.174

Rai, P.K., Lee, J., Brown, R.J. & Kim, K.H. (2021). Micro-and nano-plastic pollution: Behavior, microbial ecology, and remediation technologies. Journal of Cleaner Production, 291, 125240.
DOI 10.1016/j.jclepro.2020.125240

Rasheed, R., Latha, D., Ramachandran, D. & Gowri, G. (2013). Characterization of biopolymer producing Streptomyces parvulus, optimization of process parameters and mass production using less expensive substrates. International Journal of Bioassays, 2(4), 649-654

Roja, K., Sudhakar, D.R., Anto, S., & Mathimani, T. (2019). Extraction and characterization of polyhydroxyalkanoates from marine green alga and cyanobacteria. Biocatalalyst and Agricultural Biotechnology, 22, 101358.
DOI 10.1016/j.bcab.2019.101358

Saxena, A. & Tiwari, A. (2011). Polyhydroxyalkonates: Green plastics of the future. International Journal of Biomedical and Advance Research, 2, 356–367

Sathiyanarayanan, G., Bhatia, S.K., Song, H.S., Jeon, J.M., Kim, J., Lee, Y.K., Kim, Y.G. & Yang, Y.H. (2017). Production and characterization of medium-chain-length polyhydroxyalkanoate copolymer from Arctic psychrotrophic bacterium Pseudomonas sp. PAMC 28620. International Journal of Biological Macromolecules 97, 710–720.
DOI 10.1016/j.ijbiomac.2017.01.053

Sriyapai, T., Chuarung, T., Kimbara, K., Samosorn, S. & Sriyapai, P. (2022). Production and optimization of polyhydroxyalkanoates (PHAs) from Paraburkholderia sp. PFN 29 under submerged fermentation. Electronic Journal of Biotechnology, 56, 1-11.
DOI 10.1016/j.ejbt.2021.12.003

Shah, A.A., Hasan, F., Hameed, A. & Ahmed, S. (2008). Biological degradation of plastics: a comprehensive review. Biotechnology Advances, 26(3),246-265.
DOI 10.1016/j.ejbt.2021.12.003

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10), 2731-2739.
DOI 10.1093/molbev/msr121

Tan, G.Y.A., Chen, C.L., Li, L., Ge, L., Wang, L., Razaad, I.M.N., Li, Y., Zhao, L., Mo, Y. & Wang, J.Y. (2014). Start a research on biopolymer polyhydroxyalkanoate (PHA): a review. Polymers, 6(3), 706-754.
DOI 10.3390/polym6030706

Tan, W.A., Wijaya, I. & Purwadaria, T. (2019). Bioprospecting of polyhydroxyalkanoates-producing bacteria from Indonesian marine environment. Biodiversitas Journal of Biological Diversity, 20(5), 1309-1315.
DOI 10.13057/biodiv/d200521

Trakunjae, C., Boondaeng, A., Apiwatanapiwat, W., Kosugi, A., Arai, T., Sudesh, K. & Vaithanomsat, P. (2021). Enhanced polyhydroxybutyrate (PHB) production by newly isolated rare actinomycetes Rhodococcus sp. strain BSRT1-1 using response surface methodology. Scientific Reports, 11(1), 1896.
DOI 10.1038/s41598-021-81386-2

Traina, F., Corsino, S.F., Capodici, M., Licitra, E., Di Bella, G., Torregrossa, M. & Viviani, G. (2024). Combined recovery of polyhydroxyalkanoates and reclaimed water in the mainstream of a WWTP for agro-food industrial wastewater valorisation by membrane bioreactortechnology. Journal of Environmental Management, 351,119836.
DOI 10.1016/j.jenvman.2023.119836

Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. & Higgins, D.G. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25(24), 4876-4882.
DOI 10.1093/nar/25.24.4876

Valappil, S.P., Bhatia, Y., Bucke, C. and Roy, I. (2004). Biosynthesis of polyhydroxyalkanoic acids by Streptomyces coelicolor. e-Polymers, 049

Vu, D.H., Åkesson, D., Taherzadeh, M.J. & Ferreira, J.A. (2020) Recycling strategies for polyhydroxyalkanoate-based waste materials: An overview. Bioresource Technology, 298, 1–9.
DOI 10.1016/j.biortech.2019.122393

Vurukonda, S.S.K.P., Giovanardi, D. & Stefani, E. (2018). Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes. International Journal of Molecular Science, 19(4), 952.
DOI 10.3390/ijms19040952

Yeo, J.C.C., Muiruri, J.K., Thitsartarn, W., Li, Z. & He, C. (2018). Recent advances in the development of biodegradable PHB-based toughening materials: Approaches, advantages and applications. Material Sciences and Engineering: C .92, 1092-1116.
DOI 10.1016/j.msec.2017.11.006

Yoo, Y., Kwon, D.Y., Jeon, M., Lee, J., Kwon, H., Lee, D., Khim, J.S., Choi, Y.E. & Kim, J.J., (2024). Enhancing poly (3-hydroxybutyrate) production in halophilic bacteria through improved salt tolerance. Bioresource Technology, 394, 130175.
DOI 10.1016/j.biortech.2023.130175

Zinn, M. & Hany, R. (2005). Tailored material properties of polyhydroxyalkanoates through biosynthesis and chemical modification. Advanced Engineering Materials, 7(5), 408-411. .
DOI 10.1002/adem.200500053

Zhang Z, He H, Zhang X, Zheng S, Zheng T, Liu X, Chen G. (2023) The degradation of plastics and the production of polyhydroxyalkanoates (PHA). Sheng Wu Gong Cheng Xue Bao. 39(5):2053-2069. Chinese.
DOI 10.13345/j.cjb.230033