Released under All rights reserved
Copyright: © 2025 CISA Publisher
Ababneh, H., & Hameed, B. H., 2022. Electrofuels as emerging new green alternative fuel: A review of recent literature. Energy Conversion and Management, 254, 115213.
DOI 10.1016/j.enconman.2022.115213
Asase, R. V., Okechukwu, Q. N., & Ivantsova, M. N., 2024. Biofuels: Present and future. Environment, Development and Sustainability. Advance online publication.
DOI 10.1007/s10668-024-04992-w
Baede, A. P. M., Ahlonsou, E., Ding, Y., & Schimel, D., 2022. The climate system: An overview. Intergovernmental Panel on Climate Change (IPCC)
Behtash, S., Lu, J., Faheem, M., & Heyden, A. (2014). Solvent effects on the hydrodeoxygenation of propanoic acid over Pd(111) model surfaces. Green Chemistry, 16, 605–616.
DOI 10.1039/C3GC41368C
Buldyrev, S. V., Havlin, S., & Stanley, H. E. (2015). Temporal networks: Slowing down diffusion by long lasting interactions. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471(2184), 20150502.
DOI 10.1098/rspa.2015.0502
Cherwoo, L., & Gupta, I., 2023. Biofuels: An alternative to traditional fossil fuels—A comprehensive review. Sustainable Energy Technologies and Assessments, 60, 103503.
DOI 10.1016/j.seta.2023.103503
Choo, M. Y., Oi, L. E., Ling, T. C., Ng, E. P., Lin, Y. C., Centi, G., & Juan, J. C., 2020. Deoxygenation of triolein to green diesel in the H₂-free condition: Effect of transition metal oxide supported on zeolite Y. Journal of Analytical and Applied Pyrolysis, 147, 104797.
DOI 10.1016/j.jaap.2020.104797
Choudhary, T. V., & Phillips, C. B., 2011. Renewable fuels via catalytic hydrodeoxygenation. Applied Catalysis A: General, 397(1-2), 1–12.
DOI 10.1016/j.apcata.2011.02.025
Concawe., 2024. E-Fuels: A techno-economic assessment of European domestic production and imports towards 2050 – Update (Report No. 4/24). Concawe
Dell’Aversano S, Villante C, Gallucci K, Vanga G, Di Giuliano A., 2024 E-Fuels: A Comprehensive Review of the Most Promising Technological Alternatives towards an Energy Transition. Energies, 17(16), 3995.
DOI 10.3390/en17163995
Di Giuliano, A., Gallucci, K., Lucantonio, S., Rossi, L., & Di Vito Nolfi, G., 2023. Catalizzatore solido a base di ossidi di nichel, molibdeno e alluminio, per deossigenazione catalitica eterogenea di trigliceridi di origine biologica a formare idrocarburi, e suo metodo di sintesi senza solventi [Patent]. Italy. Patent Application No. 102023000023556
Di Vito Nolfi, G., Gallucci, K., & Rossi, L., 2021. Green diesel production by catalytic hydrodeoxygenation of vegetables oils. International Journal of Environmental Research and Public Health, 18(13041).
DOI 10.3390/ijerph182413041
Douvartzides, S. L., Charisiou, N. D., Papageridis, K. N., & Goula, M. A., 2019. Green diesel: Biomass feedstocks, production technologies, catalytic research, fuel properties and performance in compression ignition internal combustion engines. Energies, 12(5), 809.
DOI 10.3390/en12050809
Energy Institute, 2024. Statistical review of world energy 2024 (73ª ed.). Energy Institute. https://www.energyinst.org/statistical-review
Eurostat, 2024a. Final energy consumption in transport - detailed statistics. European Commission. https://ec.europa.eu/eurostat/statisticsexplained/
Eurostat, 2024b. Energy statistics - an overview. European Commission. Retrieved March 9, 2025, from https://ec.europa.eu/eurostat/statistics-explained/index.php?
Eurostat, 2025. Supply, transformation and consumption of oil and petroleum products – Last update: 02/05/2025, [Online data code: nrg_bal_c]. European Commission. . https://ec.europa.eu/eurostat/databrowser/view/NRG_BAL_C__custom_5493868/bookmark/bar?lang=en&bookmarkId=2091c847-552d-461a-bf43-c86101de02b4
DOI 10.2908/nrg_bal_c
Goh, B. H. H., Chong, C. T., & Ng, J.-H., 2024. Production of Green Diesel via Solvent-aided Deoxygenation of Methyl Oleate over Bimetallic NiCo/TiO2 Catalyst. Chemical Engineering Transactions, 113, 361-366.
DOI 10.3303/CET24113061
International Energy Agency (IEA), 2024a. World energy outlook 2024. IEA. https://www.iea.org
International Energy Agency (IEA), 2024b. Transport sector CO₂ emissions by mode in the Sustainable Development Scenario, 2000-2030. Retrieved March 9, 2025, from https://www.iea.org/data-and-statistics/charts/transport-sector-co2-emissions-by-mode-in-the-sustainable-development-scenario-2000-2030
International Energy Agency (IEA), 2024c. Towards common criteria for sustainable fuels. IEA. Retrieved from https://www.iea.org
Intergovernmental Panel on Climate Change (IPCC), 2023. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee, & J. Romero (Eds.)]. IPCC.
DOI 10.59327/IPCC/AR6-9789291691647
Kaewchada, A., Akkarawatkhoosith, N., Bunpim, D., Bangjang, T., Ngamcharussrivichai, C., & Jaree, A., 2021. Production of bio-hydrogenated diesel from palm oil using Rh/HZSM-5 in a continuous mini fixed-bed reactor. Chemical Engineering and Processing - Process Intensification, 168, 108586.
DOI 10.1016/j.cep.2021.108586
Kordouli, E., Lycourghiotis, S., Bourikas, K., Lycourghiotis, A., & Kordulis, C. (2024). Renewable diesel synthesis by hydro processing in green solvents. Current Opinion in Green and Sustainable Chemistry, 48, Article 100936.
DOI 10.1016/j.cogsc.2024.100936
Lin, D., Mao, Z., Shang, J., Zhu, H., Liu, T., Wu, Y., Li, H. Z., Peng, C., & Feng, X., 2023a. Catalyst design strategies for deoxygenation of vegetable oils to produce second-generation biodiesel. Industrial & Engineering Chemistry Research, 62(32), 12462–12481.
DOI 10.1021/acs.iecr.3c01542
Lin, D., Mao, Z., Shang, J., Zhu, H., Liu, T., Wu, Y., Li, H. Z., Peng, C., & Feng, X., 2023b. Kinetic insights into deoxygenation of vegetable oils to produce second-generation biodiesel. Fuel, 333, 126416.
DOI 10.1016/j.fuel.2022.126416
Lucantonio S, Di Giuliano A, Rossi L, Gallucci K., 2023. Green Diesel Production via Deoxygenation Process: A Review. Energies. 16(2):844.
DOI 10.3390/en16020844
Lucantonio, S., Di Vito Nolfi, G., Courson, C., Gallucci, K., Di Giuliano, A., & Rossi, L., 2025. Repurposing of propane oxidative-dehydrogenation catalysts to deoxygenation of vegetable oils for green diesel production. Fuel Processing Technology, 267, 108173.
DOI 10.1016/j.fuproc.2024.108173
Maglinao, R. L., Taiswa, A., Davison, E. T., Andriolo, J. M., Succaw, G. L., Skinner, J. L., & Kumar, S. (2024). Role of solvent in selective hydrodeoxygenation of monomeric phenols. Biomass and Bioenergy, 189, Article 107342.
DOI 10.1016/j.biombioe.2024.107342
Mahdi, H. I., Bazargan, A., McKay, G., Azelee, N. I. W., & Meili, L., 2021. Catalytic deoxygenation of palm oil and its residue in green diesel production: A current technological review. Chemical Engineering Research and Design, 174, 158–187.
DOI 10.1016/j.cherd.2021.07.009
Mahmoudi, H., Mahmoudi, M., Doustdar, O., Jahangiri, H., Tsolakis, A., Gu, S. & LechWyszynski, M., 2017. A review of Fischer Tropsch synthesis process, mechanism, surface chemistry and catalyst formulation. Biofuels Engineering, 2(1), 11-31.
DOI 10.1515/bfuel-2017-0002
Moser, B. R., 2009. Biodiesel production, properties, and feedstocks. In Vitro Cellular & Developmental Biology – Plant, 45(3), 229–266.
DOI 10.1007/s11627-009-9204-z
Naqvi, S. R., Khoja, A. H., Ali, I., & Luque, R., 2023. Recent progress in catalytic deoxygenation of biomass pyrolysis oil using microporous zeolites for green fuels production. Fuel, 333, 126268.
DOI 10.1016/j.fuel.2022.126268
Nugraha, R. E., Purnomo, H., Aziz, A., Holilah, H., Bahruji, H., Asikin-Mijan, N. A., Suprapto, S., Taufiq-Yap, Y. H., Abdul Jalil, A., Hartati, H., & Prasetyoko, D., 2024. The mechanism of oleic acid deoxygenation to green diesel hydrocarbon using porous aluminosilicate catalysts. South African Journal of Chemical Engineering, 49(1), 122–135.
DOI 10.1016/j.sajce.2024.04.009
Osman, A.I., Elgarahy, A.M., Eltaweil, A.S., Abd El-Monaem, E.M., El-Aqapa, H.G., Park, Y., Hwang, Y., Ayati, A., Farghali, M., Ihara, I., Al-Muhtaseb, A.H., Rooney, D.W., Yap, P.-S., Sillanpää, M., 2023. Biofuel production, hydrogen production and water remediation by photocatalysis, biocatalysis and electrocatalysis. Environmental Chemistry Letters, 21, 1315–1379.
DOI 10.1007/s10311-023-01581-7
Qu, L., Jiang, X., Zhang, Z., Zhang, X., Song, G., Wang, H., Yuan, Y., & Chang, Y. (2021). A review of hydrodeoxygenation of bio-oil: Model compounds, catalysts, and equipment. Green Chemistry, 23, 9348–9376.
DOI 10.1039/D1GC03183J
Raman, R., Sreenivasan, A., Kulkarni, N. V., M, S., & Nedungadi, P., 2025. Analyzing the contributions of biofuels, biomass, and bioenergy to sustainable development goals. iScience, 28, 112157.
DOI 10.1016/j.isci.2025.112157
Reitz, H. R., Ogawa, H., Payri, R., Fansler, T., Kokjohn, S., Moriyoshi, Y., Agarwal, A. K., Arcoumanis, D., Assanis, D., Bae, C., Boulouchos, K., Canakci, M., Curran, S., Denbratt, I., Gavaises, M., Guenthner, M., Hasse, C., Huang, Z., Ishiyama, T., Zhao, H., 2019. IJER editorial: The future of the internal combustion engine. International Journal of Engine Research, 1–8.
DOI 10.1177/1468087419877990
Ruangudomsakul, M., Osakoo, N., Wittayakun, J., Keawkumay, C., Butburee, T., Youngjan, S., Faungnawakij, K., Poo-arporn, Y., Kidkhunthod, P., & Khemthong, P., 2021. Hydrodeoxygenation of palm oil to green diesel products on mixed-phase nickel phosphides. Molecular Catalysis, 523, 111422.
DOI 10.1016/j.mcat.2021.111422
Saleheen, M., Verma, A. M., Mamun, O., Lu, J., & Heyden, A. (2019). Investigation of solvent effects on the hydrodeoxygenation of guaiacol over Ru catalysts. Catalysis Science & Technology, 9(22), 6253–6273.
DOI 10.1039/C9CY01763A
Sheldon, R. A. (2018). Metrics of green chemistry and sustainability: Past, present, and future. ACS Sustainable Chemistry & Engineering, 6(1), 32–48.
DOI 10.1021/acssuschemeng.7b03505
Siraj, M., & Ceylan, S., 2025. Investigation of the effect of catalyst support on oleic acid catalytic deoxygenation for green diesel production. Journal of Porous Materials, 32(1), 457–469.
DOI 10.1007/s10934-024-01725-2
Sonthalia, A., & Kumar, N., 2019. Hydroprocessed vegetable oil as a fuel for transportation sector: A review. Journal of the Energy Institute, 92(1), 1–17.
DOI 10.1016/j.joei.2017.10.008
Srifa, A., Faungnawakij, K., Itthibenchapong, V., & Assabumrungrat, S., 2014. Production of bio-hydrogenated diesel by catalytic hydrotreating of palm oil over NiMoS₂/γ-Al₂O₃ catalyst. Bioresource Technology, 158, 81–90.
DOI 10.1016/j.biortech.2014.01.100
Upadhyay, P. R., & Das, P., 2022. Catalytic materials for green diesel production. In M. Aslam, S. S. Maktedar, & A. K. Sarma (Eds.), Green diesel: An alternative to biodiesel and petrodiesel (pp. 55–108). Springer.
DOI 10.1007/978-981-19-2235-0_3
World Energy Council, 2024. World energy issues monitor 2024: Redesigning energy in 5D. World Energy Council. https://www.worldenergy.org
Wu, X., Ge, Q., & Zhu, X. (2021). Vapor phase hydrodeoxygenation of phenolic compounds on group 10 metal-based catalysts: Reaction mechanism and product selectivity control. Catalysis Today, 365, 143–161.
DOI 10.1016/j.cattod.2020.12.033
Zhang, Z., Li, Q., Wu, X., Bourmaud, C., Vlachos, D. G., Luterbacher, J., Bodi, A., & Hemberger, P. (2024). A solution for 4-propylguaiacol hydrodeoxygenation without ring saturation. Nature Communications, 15, Article 6330.
DOI 10.1038/s41467-024-50724-z
Žula, M., Grilc, M., & Likozar, B. (2022). Hydrocracking, hydrogenation and hydro-deoxygenation of fatty acids, esters and glycerides: Mechanisms, kinetics and transport phenomena. Chemical Engineering Journal, 444, 136564.
DOI 10.1016/j.cej.2022.136564
| Title | Support | Price |
|---|