an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU

POTENTIALS AND COSTS OF VARIOUS RENEWABLE GASES: A CASE STUDY FOR THE AUSTRIAN ENERGY SYSTEM BY 2050

  • Daniel Cenk Rosenfeld - Energieinstitut an der Johannes Kepler Universität Linz, Austria
  • Johannes Lindorfer - Energieinstitut an der Johannes Kepler Universität Linz, Austria
  • Hans Böhm - Energieinstitut an der Johannes Kepler Universität Linz, Austria
  • Andreas Zauner - Energieinstitut an der Johannes Kepler Universität Linz, Austria
  • Karin Fazeni-Fraisl - Energieinstitut an der Johannes Kepler Universität Linz, Austria

Released under CC BY-NC-ND

Copyright: © 2021 CISA Publisher


Abstract

This analysis estimates the technically available potentials of renewable gases from anaerobic conversion and biomass gasification of organic waste materials, as well as power-to-gas (H2 and synthetic natural gas based on renewable electricity) for Austria, as well as their approximate energy production costs. Furthermore, it outlines a theoretical expansion scenario for plant erection aimed at fully using all technical potentials by 2050. The overall result, illustrated as a theoretical merit order, is a ranking of technologies and resources by their potential and cost, starting with the least expensive and ending with the most expensive. The findings point to a renewable methane potential of about 58 TWh per year by 2050. The highest potential originates from biomass gasification (~49 TWh per year), while anaerobic digestion (~6 TWh per year) and the power-to-gas of green CO2 from biogas upgrading (~3 TWh per year) demonstrate a much lower technical potential. To fully use these potentials, 870 biomass gasification plants, 259 anaerobic digesters, and 163 power-to-gas plants to be built by 2050 in the full expansion scenario. From the cost perspective, all technologies are expected to experience decreasing specific energy costs in the expansion scenario. This cost decrease is not significant for biomass gasification, at only about 0.1 €-cent/kWh, resulting in a cost range between 10.7 and 9.0 €-cent/kWh depending on the year and fuel. However, for anaerobic digestion, the cost decrease is significant, with a reduction from 7.9 to 5.6 €-cent/kWh. It is even more significant for power-to-gas, with a reduction from 10.8 to 5.1 €-cent/kWh between 2030 and 2050.

Keywords


Editorial History

  • Received: 24 Mar 2021
  • Revised: 03 Aug 2021
  • Accepted: 23 Aug 2021
  • Available online: 30 Sep 2021

References

Alibardi, L., & Cossu, R. 2015. Composition variability of the organic fraction of municipal solid waste and effects on hydrogen and methane production potentials. Waste Manag, 36, 147-155.
DOI 10.1016/j.wasman.2014.11.019

Batidzirai, B., Smeets, E. M. W., & Faaij, A. P. C. 2012. Harmonising bioenergy resource potentials-Methodological lessons from review of state of the art bioenergy potential assessments. Renewable & Sustainable Energy Reviews, 16(9), 6598-6630.
DOI 10.1016/j.rser.2012.09.002

Becker, H. P. 2013. Investition und Finanzierung (Investment and financing). Wiesbaden: Springer. ISBN: 978-3-658-00378-4

Birol, F. 2020. Energy technology perspectives. cited in https://www.iea.org/reports/energy-technology-perspectives-2020 consulted on the 09.09.2021

Böhm, H., Zauner, A., Rosenfeld, D. C., & Tichler, R. 2020. Projecting cost development for future large-scale power-to-gas implementations. Applied Energy, 264, 114780.
DOI 10.1016/j.apenergy.2020.114780

Boldrin, A., Baral, K. R., Fitamo, T., Vazifehkhoran, A. H., Jensen, I. G., Kjaergaard, I., Lyng, K. A., Nguyen, Q. V., Nielsen, L. S., & Triolo, J. M. 2016. Optimised biogas production from the co-digestion of sugar beet with pig slurry: Integrating energy, GHG and economic accounting. Energy, 112, 606-617.
DOI 10.1016/j.energy.2016.06.068

British Petroleum p.l.c. 2019. BP statistical review of world energy. cited in https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2019-full-report.pdf consulted on the 09.09.2021

Brosowski, A., Adler, P., Erdmann, G., Thrän, D., Mantau, U., & Blanke, C. 2015. Biomassepotenziale von Rest-und Abfallstoffen–Status quo in Deutschland (Biomass potential of residue and waste streams - status quo in Germany). cited in https://mediathek.fnr.de/band-36-biomassepotenziale-von-rest-und-abfallstoffen.html consulted on the 09.09.2021

Bundesanstalt für Agrarwirtschaft. 2016. Grüner Bericht 2016 (Green report 2016). cited in https://gruenerbericht.at/cm4/jdownload/download/2-gr-bericht-terreich/1650-gb2016 consulted on the 03.09.2019

Bundesforschungszentrum für Wald. 2013. Wald im Fokus (Forrest in focus). cited in https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjJ1bbPifLyAhUrsaQKHUm8Bi4QFnoECAUQAQ&url=http%3A%2F%2Fwww.bfw.ac.at%2Fwebshop%2Findex.php%3Fcontroller%3Dattachment%26id_attachment%3D151&usg=AOvVaw2KuXFKU5pkYNC4re2SqqfR consulted on the 09.09.2021

Bundesministerium Nachhaltigkeit und Tourismus. 2019. Die Bestandsaufnahme der Abfallwirtschaft in Österreich - Statusbericht 2019 (The inventory of waste management in Austria - status report 2019). cited in https://www.arge.at/wp-content/uploads/2019/06/Die_Bestandsaufnahme_der_Abfallwirtschaft_in_%c3%96sterreich_web.pdf consulted on the 03.09.2019

Burg, V., Bowman, G., Haubensak, M., Baier, U., & Thees, O. 2018. Valorization of an untapped resource: energy and greenhouse gas emissions benefits of converting manure to biogas through anaerobic digestion. Resources Conservation and Recycling, 136, 53-62.
DOI 10.1016/j.resconrec.2018.04.004

Buttler, A., & Spliethoff, H. 2018. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review. Renewable & Sustainable Energy Reviews, 82, 2440-2454.
DOI 10.1016/j.rser.2017.09.003

Cludius, J., Hermann, H., Matthes, F. C., & Graichen, V. 2014. The merit order effect of wind and photovoltaic electricity generation in Germany 2008-2016: Estimation and distributional implications. Energy Economics, 44, 302-313.
DOI 10.1016/j.eneco.2014.04.020

DACE Cost and Value. 2017. DACE price booklet (32 ed.). Nijkerk: DACE Cost and Value. ISBN: 9463460039

Dißauer, C., Rehling, B., & Strasser, C. 2019. Machbarkeitsuntersuchung Methan aus Biomasse (Feasibility study methane from biomass). cited in https://www.gruenes-gas.at/assets/Uploads/BioEenergy2020+_Machbarkeitsuntersuchung_Methan_aus_Biomasse.pdf consulted on the 01.03.2020

enervis energy advisor GmbH. 2016. Marketstudie zur Strompreisentwicklung 2016-2050 (Marketstudy on the electricity price development 2016-2050). cited in https://enervis.de/leistung/european-power-market-outlook/ consulted on the 09.09.2021

Erler, R., Hüttenrauch, J., Schuhmann, E., Graf, F., Kiefer, J., Ball, T., Fischer, T., Kappertsbusch, V., & Dresen, B. 2013. Potenzialstudie zur nachhaltigen Erzeugung und Einspeisung gasförmiger, regenerativer Energieträger in Deutschland (Biogasatlas) (Potentialstudy on the sustainable production and feed in of gaseous, renewable energy carriers in Germany (Biogas atlas)). cited in https://www.dvgw.de/medien/dvgw/forschung/berichte/gw2_01_10.pdf consulted on the 09.09.2021

European Commission. 2011. A Roadmap for moving to a competitive low carbon economy in 2050. cited in https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2011:0112:FIN:EN:PDF consulted on the 09.09.2021

European Commission. 2019. The European green deal. cited in https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52019DC0640&from=EN consulted on the 09.09.2021

European Commission. 2020. Final Report Cost of Energy (LCOE) - Energy costs, taxes and the impact of government interventions on investments. cited in https://op.europa.eu/en/publication-detail/-/publication/76c57f2f-174c-11eb-b57e-01aa75ed71a1/language-en consulted on the 09.09.2021

eurostat. (2020). Natural gas price statistics. cited in https://ec.europa.eu/eurostat/statistics-explained/index.php/Natural_gas_price_statistics consulted on the 24.02.2021

FNR. 2013. Leitfaden Biogas: Von der Gewinnung zur Nutzung (Guideline biogas: from extraction to use). cited in https://www.fnr.de/fileadmin/allgemein/pdf/broschueren/Leitfaden_Biogas_web_V01.pdf consulted on the 09.09.2021

Gao, Y., Gao, X., & Zhang, X. H. 2017. The 2 degrees C global temperature target and the evolution of the long-term goal of addressing climate change - from the United Nations framework convention on climate change to the Paris agreement. Engineering, 3(2), 272-278.
DOI 10.1016/J.Eng.2017.01.022

German Advisory Council on Global Change. 2009. Welt im Wandel: Zukunftsfähige Bioenergie und nachhaltige Landnutzung (Future bioenergy and sustainable land use): WBGU. ISBN: 978-3-936191-21-9

Gorre, J., Ortloff, F., & van Leeuwen, C. 2019. Production costs for synthetic methane in 2030 and 2050 of an optimized Power-to-Gas plant with intermediate hydrogen storage. Applied Energy, 253, 113594.
DOI 10.1016/j.apenergy.2019.113594

Gorre, J., Ruoss, F., Karjunen, H., Schaffert, J., & Tynjala, T. 2020. Cost benefits of optimizing hydrogen storage and methanation capacities for Power-to-Gas plants in dynamic operation. Applied Energy, 257, 113967.
DOI 10.1016/j.apenergy.2019.113967

Götz, M., Lefebvre, J., Mörs, F., McDaniel Koch, A., Graf, F., Bajohr, S., Reimert, R., & Kolb, T. 2016. Renewable Power-to-Gas: A technological and economic review. Renewable Energy, 85, 1371-1390.
DOI 10.1016/j.renene.2015.07.066

Günther, T. 2014. Entwicklung einer Bewertungsmethodik zur Standortplanung und Dimensionierung von Wasserstoffanlagen (Development of an evaluation methodology for site planning and dimensioning of hydrogen plants). (Dr.Ing.). Brandenburgischen Technischen Universität Cottbus (Brandenburg University of Technology - Cottbus), cited in https://opus4.kobv.de/opus4-btu/frontdoor/index/index/docId/2984 consulted on the 10.09.2021

Hofbauer, H., Rauch, R., Bosch, K., Koch, R., & Aichernig, C. (2002). Biomass CHP plant Guessing–a success story. Paper presented at the Expert meeting on pyrolysis and gasification of biomass and waste. cited in https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.607.9078&rep=rep1&type=pdf consulted on the 10.09.2021

Kampman, B., Leguijt, C., Scholten, T., Tallat-Kelpsaite, J., Brückmann, R., Maroulis, G., Lesschen, J., Meesters, K., Sikirica, N., & Elbersen, B. 2020. Optimal use of biogas from waste streams. cited in https://ec.europa.eu/energy/sites/ener/files/documents/ce_delft_3g84_biogas_beyond_2020_final_report.pdf consulted on the 09.09.2021

Kern, S., Pfeifer, C., & Hofbauer, H. 2013. Gasification of wood in a dual fluidized bed gasifier: Influence of fuel feeding on process performance. Chemical Engineering Science, 90, 284-298.
DOI 10.1016/j.ces.2012.12.044

Kompost & Biogas Verband Österreich. (2021). Biomethan in Österreich (Biomethane in Austria). cited in https://www.kompost-biogas.info/biogas/biomethan/biomethan-in-oesterreich/ consulted on the 23.02.2021

Kost, C., Shammugam, S., Jülch, V., Huyen-Tran, N., & Schlegl, T. 2018. Levelized cost of electricity renewable energy technologies. cited in https://www.ise.fraunhofer.de/content/dam/ise/en/documents/publications/studies/EN2018_Fraunhofer-ISE_LCOE_Renewable_Energy_Technologies.pdf consulted on the 09.09.2021

Kotowicz, J., Węcel, D., & Jurczyk, M. 2018. Analysis of component operation in power-to-gas-to-power installations. Applied Energy, 216, 45-59.
DOI 10.1016/j.apenergy.2018.02.050

Kraussler, M., Pontzen, F., Muller-Hagedorn, M., Nenning, L., Luisser, M., & Hofbauer, H. 2018. Techno-economic assessment of biomass-based natural gas substitutes against the background of the EU 2018 renewable energy directive. Biomass Conversion and Biorefinery, 8(4), 935-944.
DOI 10.1007/s13399-018-0333-7

KTBL. 2008. Betriebsplanung Landwirtschaft 2008/09: Daten zu Schlachtabfällen und Schweinemist aus Genesys-Merkblatt M101 - Biogasausbeute von Hofdüngern und Co-Substraten (Farm planning for agriculture 2008/09: Data on slaughterhouse waste and pig manure from Genesys leaflet M101 - Biogas yield from farm manure and co-substrates). cited in https://www.ktbl.de/fileadmin/user_upload/Allgemeines/Download/Datensammlung/P_19491-small.pdf consulted on the 09.09.2021

Kuo, J., & Dow, J. 2017. Biogas production from anaerobic digestion of food waste and relevant air quality implications. J Air Waste Manag Assoc, 67(9), 1000-1011.
DOI 10.1080/10962247.2017.1316326

Landwirtschaftskammer Österreich. 2020. Holzmarktbericht 2020 (Wood market report 2020). cited in https://www.waldverband.at/holzmarktbericht-der-lkoe-september-2020-2/ consulted on the 09.09.2021

Lechtenböhmer, S., Nilsson, L. J., Åhman, M., & Schneider, C. 2016. Decarbonising the energy intensive basic materials industry through electrification–Implications for future EU electricity demand. Energy, 115, 1623-1631.
DOI 10.1016/j.energy.2016.07.110

LFL. (2019). Biogasausbeute verschiedener Substrate (Biogas content from various substrates). cited in https://www.lfl.bayern.de/iba/energie/049711/?sel_list=20%2Cb&anker0=substratanker#substratanker consulted on the 04.09.2019

Lindorfer, J., & Schwarz, M. M. 2013. Site-specific economic and ecological analysis of enhanced production, upgrade and feed-in of biomethane from organic wastes. Water Sci Technol, 67(3), 682-688.
DOI 10.2166/wst.2012.617

Luňáčková, P., Průša, J., & Janda, K. 2017. The merit order effect of Czech photovoltaic plants. Energy Policy, 106, 138-147.
DOI 10.1016/j.enpol.2017.02.053

Melikoglu, M., & Menekse, Z. K. 2020. Forecasting Turkey’s cattle and sheep manure based biomethane potentials till 2026. Biomass & Bioenergy, 132, 105440.
DOI 10.1016/j.biombioe.2019.105440

Müller, S. 2013. Hydrogen from biomass for industry-Industrial application of hydrogen production based on dual fluid gasification. (Dr.techn.). Technical University of Vienna, Vienna. cited in https://repositum.tuwien.at/handle/20.500.12708/14449 consulted on the 10.09.2021

Nelissen, D., Faber, J., van der Veen, R., van Grinsven, A., Shanthi, H., & van den Toorn, E. 2020. Availability and costs of liquefied bio-and synthetic methane: The maritime shipping perspective. cited in https://cedelft.eu/wp-content/uploads/sites/2/2021/03/CE_Delft_190236_Availability_and_costs_of_liquefied_bio-_and_synthetic_methane_Def.pdf consulted on the 09.09.2021

O’Shea, R., Wall, D. M., Kilgallon, I., Browne, J. D., & Murphy, J. D. 2017. Assessing the total theoretical, and financially viable, resource of biomethane for injection to a natural gas network in a region. Applied Energy, 188, 237-256.
DOI 10.1016/j.apenergy.2016.11.121

O’Shea, R., Wall, D. M., McDonagh, S., & Murphy, J. D. 2017. The potential of power to gas to provide green gas utilising existing CO2 sources from industries, distilleries and wastewater treatment facilities. Renewable Energy, 114, 1090-1100.
DOI 10.1016/j.renene.2017.07.097

ÖVGW. 2011. ÖVGW Richtlinie G B220 Regenerative Gase - Biogas (ÖVGW Guideline G B220 renewable gases - biogas). cited in https://portal.ovgw.at/pls/f?p=101:203::::RP,203:P203_ID,P203_FROM_PAGE_ID:1075524,202 consulted on the 09.09.2021

Parra, D., Zhang, X., Bauer, C., & Patel, M. K. 2017. An integrated techno-economic and life cycle environmental assessment of power-to-gas systems. Applied Energy, 193, 440-454.
DOI 10.1016/j.apenergy.2017.02.063

Reisinger, H. 2012. Rückstände aus der Nahrungs-und Genussmittelproduktion (Residues from food and luxury food production). cited in https://www.umweltbundesamt.at/fileadmin/site/publikationen/REP0403.pdf consulted on the 09.09.2021

Republik Österreich. 2020. Aus Verantwortung für Österreich. Regierungsprogramm 2020-2024 (Out of responsibility for Austria. Govermental program 2020-2024). cited in https://www.dieneuevolkspartei.at/Download/Regierungsprogramm_2020.pdf consulted on the 09.09.2021

Rodin, V., Lindorfer, J., Bohm, H., & Vieira, L. 2020. Assessing the potential of carbon dioxide valorisation in Europe with focus on biogenic CO2. Journal of CO2 Utilization, 41, 101219.
DOI 10.1016/j.jcou.2020.101219

Rosenfeld, D. C. 2020. Generation and application of renewable gases as sustainable energy carrier for industry and mobility. (Dr. Dissertation). University of Natural Resources and Life Sciences, Vienna, Austria. cited in https://forschung.boku.ac.at/fis/suchen.hochschulschriften_info?sprache_in=de&menue_id_in=107&id_in=&hochschulschrift_id_in=19542 consulted on the 10.09.2021

Rosenfeld, D. C., Lindorfer, J., & Ellersdorfer, M. 2020. Valorization of organic waste fractions: a theoretical study on biomethane production potential and the recovery of N and P in Austria. Energy Sustainability and Society, 10(1), 1-11.
DOI 10.1186/s13705-020-00272-3

Schiffer, Z. J., & Manthiram, K. 2017. Electrification and decarbonization of the chemical industry. Joule, 1(1), 10-14.
DOI 10.1016/j.joule.2017.07.008

Sensfuß, F., Ragwitz, M., & Genoese, M. 2008. The merit-order effect: A detailed analysis of the price effect of renewable electricity generation on spot market prices in Germany. Energy Policy, 36(8), 3086-3094.
DOI 10.1016/j.enpol.2008.03.035

Singlitico, A., Goggins, J., & Monaghan, R. F. D. 2018. Evaluation of the potential and geospatial distribution of waste and residues for bio-SNG production: A case study for the Republic of Ireland. Renewable & Sustainable Energy Reviews, 98, 288-301.
DOI 10.1016/j.rser.2018.09.032

Skovsgaard, L., & Jacobsen, H. K. 2017. Economies of scale in biogas production and the significance of flexible regulation. Energy Policy, 101, 77-89.
DOI 10.1016/j.enpol.2016.11.021

Smolinka, T., Wiebke, N., Sterchele, P., Lehner, F., & Jansen, M. 2018. Sudie_IndWEDe-Industrialisierung der Wasserelektrolyse in Deutschland: Chancen und Herausforderungen für nachhaltigen Wasserstoff für Verkehr, Strom und Wärme (Industrialization of water electrolysis in germany: Chances and challenges for sustainable hydrogen in mobility, electricity and heat). cited in https://www.dwv-info.de/wp-content/uploads/2019/06/NOW-Elektrolysestudie-2018.pdf consulted on the 09.09.2021

Steinmüller, H., Reiter, G., Tichler, R., Friedl, C., Furtlehner, M., Lindorfer, J., Schwarz, M., Koppe, M., Biegger, P., & Felder, A. 2014. Power to Gas-eine Systemanalyse: Markt-und Technologiescouting und-analyse (Power to Gas - a system analysis: market and technology scouting and analysis). cited in https://www.ea.tuwien.ac.at/fileadmin/t/ea/projekte/PtG/Endbericht_-_Power_to_Gas_-_eine_Systemanalyse_-_2014.pdf consulted on the 10.09.2021

Steubing, B., Zah, R., Waeger, P., & Ludwig, C. 2010. Bioenergy in Switzerland: Assessing the domestic sustainable biomass potential. Renewable & Sustainable Energy Reviews, 14(8), 2256-2265.
DOI 10.1016/j.rser.2010.03.036

Strimitzer, L., & Höher, M. 2020. Holzströme in Österreich (Wood streams in Austria). cited in https://www.klimaaktiv.at/erneuerbare/energieholz/holzstr_oesterr.html consulted on the 09.09.2021

Swanson, R. M., Platon, A., Satrio, J. A., & Brown, R. C. 2010. Techno-economic analysis of biomass-to-liquids production based on gasification. Fuel, 89, S11-S19.
DOI 10.1016/j.fuel.2010.07.027

Thrän, D., Pfeiffer, D., Brosowski, A., Fischer, E., Herrmann, A., Majer, S., Oehmichen, K., Schmersahl, R., Schröder, T., & Stecher, K. 2013. Methodenhandbuch Stoffstromorientierte Bilanzierung der Klimagaseffekte (Methods manual material flow-oriented balancing of greenhouse gas effects). cited in https://www.energetische-biomassenutzung.de/fileadmin/media/6_Publikationen/04_Methodenhandbuch_2013_final.pdf consulted on the 09.09.2021

Thunman, H., Seemann, M., Vilches, T. B., Maric, J., Pallares, D., Strom, H., Berndes, G., Knutsson, P., Larsson, A., Breitholtz, C., & Santos, O. 2018. Advanced biofuel production via gasification - lessons learned from 200 man-years of research activity with Chalmers’ research gasifier and the GoBiGas demonstration plant. Energy Science & Engineering, 6(1), 6-34.
DOI 10.1002/ese3.188

Tichler, R., & Zauner, A. 2018. Perspectives of the Gas Sector - GREENING THE GAS. Renewable Energy Law and Policy Review, 8(4), 42-48.
DOI 10.2307/26638285

TNO. (2021). Database for the physico-chemical composition of (treated) lignocellulosic biomass, micro- and macroalgae, various feedstocks for biogas production and biochar. cited in https://phyllis.nl/ consulted on the 05.03.2021

Universität Rostock, I. f. E. u. U. g., ; Bundesforschungsanstalt für Landwirtschaft, . 2007. Biogaserzeugung durch Trockenvergärung von organischen Rückständen, Nebenprodukten und Abfällen aus der Landwirtschaft (Biogas production via dry anerobic digestion of organic residues, by-products and wastes from agriculture). cited in https://www.infothek-biomasse.ch/images/2007_FNR_Trockenvergaerung.pdf consulted on the 09.09.2021

van Melle, T., Peters, D., Cherkasky, J., Wessels, R., Mir, G. R., & Hofsteenge, W. 2018. Gas for Climate: How gas can help to achieve the Paris Agreement target in an affordable way. cited in https://gasforclimate2050.eu/ consulted on the 09.09.2021

Vienna University of Technology. 2012. Biogas to biomethane. Technology review. cited in https://www.membran.at/downloads/2012_BioRegions_BiogasUpgradingTechnologyReview_ENGLISH.pdf consulted on the 09.09.2021

Wang, S. L., Jena, U., & Das, K. C. 2018. Biomethane production potential of slaughterhouse waste in the United States. Energy Conversion and Management, 173, 143-157.
DOI 10.1016/j.enconman.2018.07.059

Xie, L., MacDonald, S. L., Auffhammer, M., Jaiswal, D., & Berck, P. 2019. Environment or food: Modeling future land use patterns of miscanthus for bioenergy using fine scale data. Ecological economics, 161, 225-236.
DOI 10.1016/j.ecolecon.2019.03.013