an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU

ECONOMIC EVALUATION OF A HYDROTHERMAL LIQUEFACTION PROCESS

  • Geert Haarlemmer - University Grenoble Alpes, CEA, LITEN, DTBH/SBRT/LTCB, France
  • Morgane Briand - University Grenoble Alpes, CEA, LITEN, DTBH/SBRT/LTCB, France
  • Anne Roubaud - University Grenoble Alpes, CEA, LITEN, DTBH/SBRT/LTCB, France
  • Julien Roussely - University Grenoble Alpes, CEA, LITEN, DTBH/SBRT/LTCB, France
  • Maxime Déniel - University Grenoble Alpes, CEA, LITEN, DTBH/SBRT/LTCB, France

DOI 10.31025/2611-4135/2018.13695

Released under CC BY-NC-ND

Copyright: © 2018 CISA Publisher

Editorial History

  • Received: 30 Jan 2018
  • Revised: 11 Jun 2018
  • Accepted: 30 Jul 2018
  • Available online: 10 Sep 2018

Abstract

Wet waste streams include a wide variety of products such as food processing residues, sewage sludge, but also the organic fraction of municipal solid waste. Hydrothermal liquefaction is a thermochemical conversion in hot compressed water that produces a hydrophobic product. This paper gives presents how hydrothermal liquefaction can produce a biocrude or a heavy fuel oil from blackcurrant pomace, grape marc and sewage sludge. The paper presents experimental results as well as a technical and economic evaluation of the process. The results from hydrothermal liquefaction depend on the resource. Typical biocrude yield is 50% of the dry resource while bio-oil yield can be up to 25%. High ash resources are however less interesting for this technology. The production costs are high compared to their fossil counterparts but gate fees in the order of 50 to 130 € tonne-1 could ensure economic competitiveness compared to fossil fuels.​

Keywords


References

ADEME. (2015). Referentiel National des coûts du service public de gestion des déchets.

Afnor, NF EN 14774-1 Biocombustibles solides - Détermination de la teneur en humidité - Méthode par séchage à l’étuve - Partie 1 : humidité totale - Méthode de référence (2010a).

Afnor, NF EN 14775 Biocombustibles solides - Méthode de détermination de la teneur en cendres (2010b).

Afnor, NF V18-122 - Aliments des animaux - Détermination séquentielle des constituants pariétaux - Méthode par traitement aux détergents neutre et acide et à l’acide sulfurique (2013).

Anouti, Suzanne, Haarlemmer, Geert, Déniel, Maxime, & Roubaud, Anne. (2016). Analysis of Physicochemical Properties of Bio-Oil from Hydrothermal Liquefaction of Blackcurrant Pomace. Energy & Fuels, 30(1), 398-406.
DOI 10.1021/acs.energyfuels.5b02264

Awiplan. (2015). Referentiel national des coûts du service public de gestion des déchets en 2012. Angers: ADEME - Service Mobilisation et Valorisation des Déchets.

Buisonjé, F.E. de, Bergsma, E.J., Zeevalkink, J.A., & Melse, R.W. (2010). Feasibility of HTU for manure processing. Wageningen: Wageningen University.

Chauvel, A ., Fournier, G., Raimbault, C., & Pigeyre, A. (2001). Manuel d’évaluation économique des procédés. Paris: Editions Technip.

Déniel,  M., Haarlemmer,  G., Roubaud,  A., Weiss-Hortala,  E., & Fages,  J. (2016). Bio-oil Production from Food Processing Residues: Improving the Bio-oil Yield and Quality by Aqueous Phase Recycle in Hydrothermal Liquefaction of Blackcurrant (Ribes nigrum L.) Pomace. Energy&Fuels, 30(6), 4895–4904.
DOI 10.1021/acs.energyfuels.6b00441

Deniel, Maxime, Haarlemmer, Geert, Roubaud, Anne, Weiss-Hortala, Elsa, & Fages, Jacques. (2017). Hydrothermal liquefaction of blackcurrant pomace and model molecules: understanding of reaction mechanisms. Sustainable Energy & Fuels, 1, 555-582.
DOI 10.1039/C6SE00065G

Déniel, Maxime, Haarlemmer, Geert, Roubaud, Anne, Weiss-Hortala, Elsa, & Fages, Jacques. (2016). Optimisation of bio-oil production by hydrothermal liquefaction of agro-industrial residues: blackcurrant pomace (Ribes nigrum L.) as an example. Biomass and Bioenergy, 95, 273-285.
DOI 10.1016/j.biombioe.2016.10.012

Dysert, L. (2003). Sharpen Your Cost Estimating Skills. Cost Engineering, 46(6), 22-30.

Elliott, Douglas C., & Schiefelbein, Gary F. (1989). Liquid Hydrocarbon fuels from biomass Division of Fuel Chemistry Annual Meeting Preprints (Vol. 34, pp. 1160-1166): American Chemical Society.

Ferry, M., & Wiart., J. (2002). Coûts de la filière d’utilisation agricole des boues d’épuration municipales. Ingénieries - EAT, 30, 59-69.

Goudriaan, F., & Peferoen, D.G.R. (1990). Liquid fuels from biomass via a hydrothermal process. Chemical Engineering Science, 45(8), 2729-2734.

Haarlemmer, Geert, Guizani, Chamseddine, Anouti, Suzanne, Déniel, Maxime, Roubaud, Anne, & Valin, Sylvie. (2016). Analysis and comparison of bio-oils obtained by hydrothermal liquefaction and fast pyrolysis of beech wood. Fuel, 174, 180-188.
DOI 10.1016/j.fuel.2016.01.082

Hognon, Céline, Delrue, Florian, & Boissonnet, Guillaume. (2015). Energetic and economic evaluation of Chlamydomonas reinhardtii hydrothermal liquefaction and pyrolysis through thermochemical models. Energy, 93, Part 1, 31-40.
DOI 10.1016/j.energy.2015.09.021

Kruse, Andrea, & Dahmen, Nicolaus. (2015). Water – A magic solvent for biomass conversion. The Journal of Supercritical Fluids, 96(0), 36-45.
DOI 10.1016/j.supflu.2014.09.038

Minarick, Mitchell, Zhang, Yuanhui, Schideman, Lance, Wang, Zhichao, Yu, Guo, Funk, Ted, & Barker, Doug. (2011). Product and Economic Analysis of Direct Liquefaction of Swine Manure. BioEnergy Research, 4(4), 324-333.
DOI 10.1007/s12155-011-9157-z

Ou, Longwen, Thilakaratne, Rajeeva, Brown, Robert C., & Wright, Mark M. (2015). Techno-economic analysis of transportation fuels from defatted microalgae via hydrothermal liquefaction and hydroprocessing. Biomass and Bioenergy, 72(0), 45-54.
DOI 10.1016/j.biombioe.2014.11.018

Pedersen, T. H., Grigoras, I. F., Hoffmann, J., Toor, S. S., Daraban, I. M., Jensen, C. U., Rosendahl, L. A. (2016). Continuous hydrothermal co-liquefaction of aspen wood and glycerol with water phase recirculation. Applied Energy, 162, 1034-1041.
DOI 10.1016/j.apenergy.2015.10.165

ProSim. (2012). ProSimPlus 3. Toulouse, France: ProSim.

Turton, Richart, Bailie, BRichard C., Whiting, Wallace B., & Shaeiwitz, Joseph A. (2003). Analysis, Synthesis and Design of Chemical Processes (2nd ed.). New Jersey, USA: Prentice Hall.

Yang, Linxi, Nazari, Laleh, Yuan, Zhongshun, Corscadden, Kenneth, Xu, Chunbao, & He, Quan. (2016). Hydrothermal liquefaction of spent coffee grounds in water medium for bio-oil production. Biomass and Bioenergy, 86, 191-198.
DOI 10.1016/j.biombioe.2016.02.005

Zhu, Yunhua, Biddy, Mary J., Jones, Susanne B., Elliott, Douglas C., & Schmidt, Andrew J. (2014). Techno-economic analysis of liquid fuel production from woody biomass via hydrothermal liquefaction (HTL) and upgrading. Applied Energy, 129, 384-394.
DOI 10.1016/j.apenergy.2014.03.053


oct
15
feb
23
sep
30