an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU

DETERMINING THE CLIMATE RELEVANCE OF REFUSE-DERIVED FUELS – VALIDITY OF LITERATURE-DERIVED VALUES IN COMPARISON TO ANALYSIS-DERIVED VALUES

  • Therese Schwarzboeck - Institute for Water Quality and Resource Management, TU Wien, Austria
  • Philipp Aschenbrenner - Institute for Water Quality and Resource Management, TU Wien, Austria
  • Sarah Muehlbacher - Institute for Water Quality and Resource Management, TU Wien, Austria
  • Soenke Szidat - Department of Chemistry and Biochemistry & Oeschger Centre for Climate Change Research, University of Bern, Switzerland
  • Stefan Spacek - Institute for Water Quality and Resource Management, TU Wien, Austria
  • Johann Fellner - Institute for Water Quality and Resource Management, TU Wien, Austria

DOI 10.31025/2611-4135/2018.13649

Released under CC BY-NC-ND

Copyright: © 2018 Cisa Publisher

Editorial History

  • Received: 23 Jan 2018
  • Revised: 15 May 2018
  • Accepted: 25 Jun 2018
  • Available online: 30 Jun 2018

Abstract

The adapted Balance Method (aBM) represents a cost efficient method for determining the fossil share in solid refuse-derived fuels (RDF). The method requires data on the elemental composition of the RDF on water-and-ash-free basis (TOXRDF) and on the elemental composition of biogenic and fossil organic matter on water-and-ash-free basis present in the RDF (TOXBio and TOXFos). TOXBio and TOXFos generally need to be defined only once (e.g., before a routine application). After these data are known, only TOXRDF needs to be determined analytically for any RDF sample in order to apply the aBM. As TOXBio and TOXFos are crucial input parameter for the aBM, the presented paper aims to assess the most suitable and practical way for their reliable determination. Within this study, 6 different solid RDFs are investigated and the aBM is applied, whereby the suitability of literature values is compared to own analysis data for TOXBio and TOXFos. The potential utilization of literature data could save the initial workload when applying the aBM and could make the method even more economical and practical compared to other methods. Altogether, seven aBM results are compared utilizing seven different methods for generating input values of TOXBio and TOXFos: using generic values, literature values only, analyses results only, or combinations of literature and analyses data. The study results suggest that the usage of analysis data together with information from literature is the best option to derive reliable input data (TOXBio and TOXFos) for the aBM (mean deviation from standardized methods of below 2%). The findings further suggest that there is a typical composition of the biogenic and fossil organic matter present in RDFs produced out of commercial and industrial waste. Thus, the initial workload for conducting RDF-specific analyses could be significantly reduced when some more data about different types of RDFs are collected (e.g in a database).

Keywords


References

Aranda Usón, A., López-Sabirón, A.M., Ferreira, G., Llera Sastresa, E., 2013. Uses of alternative fuels and raw materials in the cement industry as sustainable waste management options. Renewable and Sustainable Energy Reviews 23, 242-260.

EN 15403:2011. Solid recovered fuels – Determination of ash content. European Committee for Standardization, 10 pages.

EN 15407:2011. Solid recovered fuels – Methods for the determination of carbon (C), hydrogen (H) and nitrogen (N) content. DIN Deutsches Institut für Normung e. V., Berlin, 16 pages.

EN 15440:2011. Solid recovered fuels – Methods for the determination of biomass content. DIN Deutsches Institut für Normung e. V., 60 pages.

EN 15413:2011. Solid recovered fuels – Methods for the preparation of the test sample from the laboratory sample. DIN Deutsches Institut für Normung e. V., 39 pages.

Fellner, J., Aschenbrenner, P., Cencic, O., Rechberger, H., 2011. Determination of the biogenic and fossil organic matter content of refuse-derived fuels based on elementary analyses. Fuel 90, 3164-3171.

Fellner, J., Rechberger, H., 2009. Abundance of 14C in biomass fractions of wastes and solid recovered fuels. Waste Manage 29, 1495-1503.

Garcés, D., Díaz, E., Sastre, H., Ordóñez, S., González-LaFuente, J.M., 2016. Evaluation of the potential of different high calorific waste fractions for the preparation of solid recovered fuels. Waste Manage 47, Part B, 164-173.

ISO 18466:2016 – Stationary source emissions – Determination of the biogenic fraction in CO2 in stacks gas using the balance method. International Organization for Standardization, https://www.iso.org/standard/62513.html, 25 pages.

Jones, F.C., Blomqvist, E.W., Bisaillon, M., Lindberg, D.K., Hupa, M., 2013. Determination of fossil carbon content in Swedish waste fuel by four different methods. Waste Manage. Res. 31, 1052-1061.

Kost, T., 2001. Brennstofftechnische Charakterisierung von Haushaltsabfällen (“Fuel Characterization of Household Waste”) (Ph.D.Thesis). Dresden Technical University, Dresden, Germany, 134 pages.

Lorber, K.E., Sarc, R., Aldrian, A., 2012. Design and quality assurance for solid recovered fuel. Waste Manage Res 30, 370-380.

Meraz, L., Domı́nguez, A., Kornhauser, I., Rojas, F., 2003. A thermochemical concept-based equation to estimate waste combustion enthalpy from elemental composition☆. Fuel 82, 1499-1507.

Mohn, J., Szidat, S., Fellner, J., Rechberger, H., Quartier, R., Buchmann, B., Emmenegger, L., 2008. Determination of biogenic and fossil CO2 emitted by waste incineration based on 14CO2 and mass balances. Bioresource Technol 99, 6471-6479.

Nasrullah, M., Vainikka, P., Hannula, J., Hurme, M., Karki, J., 2014a. Mass, energy and material balances of SRF production process. Part 1: SRF produced from commercial and industrial waste. Waste Manage 34, 1398-1407.

Nasrullah, M., Vainikka, P., Hannula, J., Hurme, M., Karki, J., 2014b. Mass, energy and material balances of SRF production process. Part 2: SRF produced from construction and demolition waste. Waste Manage 34, 2163-2170.

Nasrullah, M., Vainikka, P., Hannula, J., Hurme, M., Kärki, J., 2015. Mass, energy and material balances of SRF production process. Part 3: Solid recovered fuel produced from municipal solid waste. Waste Manage Res 33, 146-156.

Pomberger, R., Sarc, R., 2014. Use of Solid Recovered Fuels in the Cement Industry. Waste Manage 4, 472-487.

Sarc, R., Lorber, K., Pomberger, R., Rogetzer, M., Sipple, E., 2014. Design, quality, and quality assurance of solid recovered fuels for the substitution of fossil feedstock in the cement industry. Waste Manage Res 32, 565-585.

Schwarzböck, T., Aschenbrenner, P., Rechberger, H., Brandstätter, C., Fellner, J., 2016a. Effects of sample preparation on the accuracy of biomass content determination for refuse derived fuels. Fuel Process Technol 153, 101-110.

Schwarzböck, T., Eygen, E.V., Rechberger, H., Fellner, J., 2017. Determining the amount of waste plastics in the feed of Austrian waste-to-energy facilities. Waste Manage Res 35, 207-216.

Schwarzböck, T., Spacek, S., Aschenbrenner, P., Szidat, S., Eßmeister, J., Fellner, J., 2016b. A new method to determine the biomass content in RDF – practical application and comparison to standardized methods, ISWA World Congress 2016, 19.-21.September 2016; International Solid Waste Association, Novi Sad, Serbia.

Schwarzböck, T., Rechberger, H., Aschenbrenner, P., Spacek, S., Szidat, S., Fellner, J., 2018. Klimarelevanz von Ersatzbrennstoffen – Anwendung und Vergleich verschiedener Bestimmungsmethoden („Climate-relevance of refuse-derived fuels – Application and comparison of different determination methods“). Österr Wasser- und Abfallw 70, 179-193; Springer Vienna.
DOI 10.1007/s00506-018-0466-8.

Staber, W., Flamme, S., Fellner, J., 2008. Methods for determining the biomass content of waste. Waste Manage Res 26, 78-87.

Szidat, S., Salazar, G.A., Vogel, E., Battaglia, M., Wacker, L., Synal, H.-A., Türler, A., 2014. 14C Analysis and Sample Preparation at the New Bern Laboratory for the Analysis of Radiocarbon with AMS (LARA). Radiocarbon 56, 561-566.

VÖZ, 2015, Emissionen aus Anlagen der österreichischen Zementindustrie ("Emissions from Austrias cement industry") – Berichtsjahr 2014, Mauschitz, G., Verein der österreichischen Zementindustrie VÖZ (Association of Austrian cement industry), Vienna, Austria, 29 pages.


feb
23
sep
30