an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU

COMPOSTING OF VEGAN KITCHEN WASTE: APPLICABILITY ASSESSMENT

  • Karolina Natalia Sobieraj - Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, Poland
  • Karolina Giez - Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, Poland
  • Sylwia Stegenta-Dąbrowska - Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, Poland
  • Katarzyna Pawęska - Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, Poland
  • Andrzej Białowiec - Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, Poland

Released under CC BY-NC-ND

Copyright: © 2021 CISA Publisher


Abstract

Kitchen waste from vegan households can be a raw material for home or backyard composting. However, the use of waste without components like eggshells or meat can constitute several problems, including the decrease of the process temperature and the content of Ca, N, K, Mg, Mn, Na, and S. The scientific aim of the study was to investigate possibility of production and applicability of vegan compost (VC) produced from kitchen waste during 12-weeks backyard composting. The VC properties have been compared to the traditional compost (TC), made from plant- and animal-origin waste materials. Analyzes showed that VC and TC have similar properties, reaching a pH close to 7.5, respiratory activity AT4 <2 mgO2‧(g dry mass)-1and dry matter content of ~79%. VC didn’t show any phytotoxic effect on garden cress; it was characterized by the highest seed germination (100%) and it stimulated the growth of plants’ roots. It was characterized by a higher content of phosphates, P and K, and achieved a lower BOD/COD ratio, demonstrating its maturity and low rotting potential. VC also contained less chloride, Ni, and Pb and showed a lower potential for nitrates leaching. The values of contaminants contained in VC samples didn't exceed the limit values for organic fertilizers. Therefore, studies indicated that plant-based kitchen waste can be a valuable substrate to produce compost and proved that vegan households, restaurants, and cafes are not disqualified from implementing a circular economy by using them assecondary material.

Keywords


Editorial History

  • Received: 28 Nov 2021
  • Revised: 19 May 2022
  • Accepted: 06 Jun 2022
  • Available online: 30 Jun 2022

References

Aavik, K. (2019). The Rise of Veganism in Post-Socialist Europe: Making Sense of Emergent Vegan Practices and Identities in Estonia. Through a Vegan Studies Lens: Textual Ethics and Lived Activism, 146–164

Abou-Arab, A. A. K. (1997). Effect of Ras cheese manufacturing on the stability of DDT and its metabolites. Food Chemistry, 59(1), 115–119.
DOI 10.1016/S0308-8146(96)00214-2

Agnew, J. M., & Leonard, J. J. (2003). The Physical Properties of Compost. Compost Science & Utilization, 11(3), 238–264.
DOI 10.1080/1065657X.2003.10702132

Ait Baddi, G., Antonio Alburquerque, J., Gonzálvez, J., Cegarra, J., & Hafidi, M. (2004). Chemical and spectroscopic analyses of organic matter transformations during composting of olive mill wastes. International Biodeterioration & Biodegradation, 54(1), 39–44.
DOI 10.1016/j.ibiod.2003.12.004

Amir, S., Hafidi, M., Merlina, G., & Revel, J.-C. (2005). Sequential extraction of heavy metals during composting of sewage sludge. Chemosphere, 59(6), 801–810.
DOI 10.1016/j.chemosphere.2004.11.016

Assuero, S. G., Mollier, A., & Pellerin, S. (2004). The decrease in growth of phosphorus-deficient maize leaves is related to a lower cell production. Plant, Cell & Environment, 27(7), 887–895.
DOI 10.1111/j.1365-3040.2004.01194.x

Barral, M. T., & Paradelo, R. (2011). A review on the use of phytotoxicity as a compost quality indicator. Dynamic Soil, Dynamic Plant, 5(Special Issue 2), 36–44

Benito, M., Masaguer, A., Moliner, A., & De Antonio, R. (2006). Chemical and physical properties of pruning waste compost and their seasonal variability. Bioresource Technology, 97(16), 2071–2076.
DOI 10.1016/j.biortech.2005.09.011

Bernai, M. P., Paredes, C., Sánchez-Monedero, M. A., & Cegarra, J. (1998). Maturity and stability parameters of composts prepared with a wide range of organic wastes. Bioresource Technology, 63(1), 91–99.
DOI 10.1016/S0960-8524(97)00084-9

Binner, E., Böhm, K., & Lechner, P. (2012). Large scale study on measurement of respiration activity (AT4) by Sapromat and OxiTop. Waste Management, 32(10), 1752–1759.
DOI 10.1016/j.wasman.2012.05.024

Borglin, S. E., Hazen, T. C., Oldenburg, C. M., & Zawislanski, P. T. (2004). Comparison of Aerobic and Anaerobic Biotreatment of Municipal Solid Waste. Journal of the Air & Waste Management Association, 54(7), 815–822.
DOI 10.1080/10473289.2004.10470951

Brown, K., Ghoshdastidar, A. J., Hanmore, J., Frazee, J., & Tong, A. Z. (2013). Membrane bioreactor technology: A novel approach to the treatment of compost leachate. Waste Management, 33(11), 2188–2194.
DOI 10.1016/j.wasman.2013.04.006

Bueno, P., Tapias, R., López, F., & Díaz, M. J. (2008). Optimizing composting parameters for nitrogen conservation in composting. Bioresource Technology, 99(11), 5069–5077.
DOI 10.1016/j.biortech.2007.08.087

Campbell, A. G. (Univ of I., & Tripepi, R. R. (1991). Composting of wood and yard wastes. Forest Products Journal (USA). https://agris.fao.org/agris-search/search.do?recordID=US9327240

Carus, F. (2010). UN urges global move to meat and dairy-free diet. Guardian. https://www.theguardian.com/environment/2010/jun/02/un-report-meat-free-diet

Cerda, A., Artola, A., Font, X., Barrena, R., Gea, T., & Sánchez, A. (2018). Composting of food wastes: Status and challenges. Bioresource Technology, 248, 57–67.
DOI 10.1016/j.biortech.2017.06.133

Chanakya, H. N., Ramachandra, T. V., Guruprasad, M., & Devi, V. (2007). Micro-treatment options for components of organic fraction of MSW in residential areas. Environmental Monitoring and Assessment, 135(1), 129–139.
DOI 10.1007/s10661-007-9711-5

Christopher, A., Bartkowski, J. P., & Haverda, T. (2018). Portraits of Veganism: A Comparative Discourse Analysis of a Second-Order Subculture. Societies, 8(3), 55.
DOI 10.3390/soc8030055

Cusack, M., Fraser, A. C., & Stachel, T. (2003). Magnesium and phosphorus distribution in the avian eggshell. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 134(1), 63–69.
DOI 10.1016/S1096-4959(02)00185-9

de Guardia, A., Mallard, P., Teglia, C., Marin, A., Le Pape, C., Launay, M., Benoist, J. C., & Petiot, C. (2010). Comparison of five organic wastes regarding their behaviour during composting: Part 2, nitrogen dynamic. Waste Management, 30(3), 415–425.
DOI 10.1016/j.wasman.2009.10.018

de Souza Lima, R. G., & Mahler, C. F. (2020). EVALUATION OF NEW SMALL-SCALE COMPOSTING PRACTICES WITH ENERGY RECOVERY. Detritus, 10, 3.
DOI 10.31025/2611-4135/2020.13908

Dolan, K. (2016). The Vegan Studies Project: Food, Animals, and Gender in the Age of Terror. By Laura Wright. ISLE: Interdisciplinary Studies in Literature and Environment, 23(3), 644–645.
DOI 10.1093/isle/isw059

Droux, M. (2004). Sulfur Assimilation and the Role of Sulfur in Plant Metabolism: A Survey. Photosynthesis Research, 79(3), 331–348.
DOI 10.1023/B:PRES.0000017196.95499.11

El Fels, L., Zamama, M., El Asli, A., & Hafidi, M. (2014). Assessment of biotransformation of organic matter during co-composting of sewage sludge-lignocelullosic waste by chemical, FTIR analyses, and phytotoxicity tests. International Biodeterioration & Biodegradation, 87, 128–137.
DOI 10.1016/j.ibiod.2013.09.024

Emino, E. R., & Warman, P. R. (2004). Biological Assay for Compost Quality. Compost Science & Utilization, 12(4), 342–348.
DOI 10.1080/1065657X.2004.10702203

Enb, A., Donia, M. a. A., Abd-Rabou, N. S., Abou-Arab, A. a. K., & El-Senaity, M. H. (2009). Chemical composition of raw milk and heavy metals behavior during processing of milk products. Global Veterinaria, 3(3), 268–275

Eneji, A. E., Honna, T., Yamamoto, S., Masuda, T., Endo, T., & Irshad, M. (2003). Changes in Humic Substances and Phosphorus Fractions During Composting. Communications in Soil Science and Plant Analysis, 34(15–16), 2303–2314.
DOI 10.1081/CSS-120024065

Engstrom, A., Tobelmann, R. C., & Albertson, A. M. (1997). Sodium intake trends and food choices. The American Journal of Clinical Nutrition, 65(2), 704S-707S.
DOI 10.1093/ajcn/65.2.704S

Epstein, E. (2017). The Science of Composting. CRC Press.
DOI 10.1201/9780203736005

Farrell, M., Perkins, W. T., Hobbs, P. J., Griffith, G. W., & Jones, D. L. (2010). Migration of heavy metals in soil as influenced by compost amendments. Environmental Pollution, 158(1), 55–64.
DOI 10.1016/j.envpol.2009.08.027

Faverial, J., & Sierra, J. (2014). Home composting of household biodegradable wastes under the tropical conditions of Guadeloupe (French Antilles). Journal of Cleaner Production, 83, 238–244.
DOI 10.1016/j.jclepro.2014.07.068

Fu, Q., Liu, Y., Li, L., & Achal, V. (2014). A survey on the heavy metal contents in Chinese traditional egg products and their potential health risk assessment. Food Additives & Contaminants. Part B, Surveillance, 7(2), 99–105.
DOI 10.1080/19393210.2013.853106

García, C., Hernández, T., & Costa, F. (1991). Study on water extract of sewage sludge composts. Soil Science and Plant Nutrition, 37(3), 399–408.
DOI 10.1080/00380768.1991.10415052

Gavilanes-Terán, I., Jara-Samaniego, J., Idrovo-Novillo, J., Bustamante, M. A., Moral, R., & Paredes, C. (2016). Windrow composting as horticultural waste management strategy – A case study in Ecuador. Waste Management, 48, 127–134.
DOI 10.1016/j.wasman.2015.11.026

Giannakis, G. V., Kourgialas, N. N., Paranychianakis, N. V., Nikolaidis, N. P., & Kalogerakis, N. (2014). Effects of Municipal Solid Waste Compost on Soil Properties and Vegetables Growth. Compost Science & Utilization, 22(3), 116–131.
DOI 10.1080/1065657X.2014.899938

Grace, E. J., & MacFarlane, G. R. (2016). Assessment of the bioaccumulation of metals to chicken eggs from residential backyards. Science of The Total Environment, 563–564, 256–260.
DOI 10.1016/j.scitotenv.2016.04.128

Guerra, F., Trevizam, A. R., Muraoka, T., Marcante, N. C., & Canniatti-Brazaca, S. G. (2012). Heavy metals in vegetables and potential risk for human health. Scientia Agricola, 69(1), 54–60.
DOI 10.1590/S0103-90162012000100008

Gupta, G., & Doherty, M. (1990). Effect of composting and number of flocks on poultry litter extract bod and toxicity. Water, Air, and Soil Pollution, 51(1), 139–145.
DOI 10.1007/BF00211511

Hashimoto, Y., Takamoto, A., Kikkawa, R., Murakami, K., & Yamaguchi, N. (2014). Formations of Hydroxyapatite and Inositol Hexakisphosphate in Poultry Litter during the Composting Period: Sequential Fractionation, P K-edge XANES and Solution 31P NMR Investigations. Environmental Science & Technology, 48(10), 5486–5492.
DOI 10.1021/es404875j

Haug, R. (1993). The Practical Handbook of Compost Engineering. Routledge

He, M., Tian, G., & Liang, X. (2009). Phytotoxicity and speciation of copper, zinc and lead during the aerobic composting of sewage sludge. Journal of Hazardous Materials, 163(2–3), 671–677.
DOI 10.1016/j.jhazmat.2008.07.013

Ibrahim, E. A. (2016). Seed priming to alleviate salinity stress in germinating seeds. Journal of Plant Physiology, 192, 38–46.
DOI 10.1016/j.jplph.2015.12.011

Illera-Vives, M., Seoane Labandeira, S., Brito, L. M., López-Fabal, A., & López-Mosquera, M. E. (2015). Evaluation of compost from seaweed and fish waste as a fertilizer for horticultural use. Scientia Horticulturae, 186, 101–107.
DOI 10.1016/j.scienta.2015.02.008

Inbar, Y., Hadar, Y., & Chen, Y. (1993). Recycling of Cattle Manure: The Composting Process and Characterization of Maturity. Journal of Environmental Quality, 22(4), 857–863.
DOI 10.2134/jeq1993.00472425002200040032x

Islam, E. ul, Yang, X., He, Z., & Mahmood, Q. (2007). Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops. Journal of Zhejiang University. Science. B, 8(1), 1–13.
DOI 10.1631/jzus.2007.B0001

Iwegbue, C. M. A., Emuh, F. N., Isirimah, N. O., & Egun, A. C. (2007). Fractionation, characterization and speciation of heavy metals in composts and compost-amended soils. African Journal of Biotechnology, 6(2), Article 2.
DOI 10.4314/ajb.v6i2.56100

Jouraiphy, A., Amir, S., Winterton, P., El Gharous, M., Revel, J.-C., & Hafidi, M. (2008). Structural study of the fulvic fraction during composting of activated sludge–plant matter: Elemental analysis, FTIR and 13C NMR. Bioresource Technology, 99(5), 1066–1072.
DOI 10.1016/j.biortech.2007.02.031

Kalamdhad, A., & Kazmi, A. (2008). Mixed organic waste composting using rotary drum composter.
DOI 10.1504/IJEWM.2008.016989

Kalamdhad, A. S., & Kazmi, A. A. (2009a). Effects of turning frequency on compost stability and some chemical characteristics in a rotary drum composter. Chemosphere, 74(10), 1327–1334.
DOI 10.1016/j.chemosphere.2008.11.058

Kalamdhad, A. S., & Kazmi, A. A. (2009b). Rotary drum composting of different organic waste mixtures. Waste Management & Research, 27(2), 129–137.
DOI 10.1177/0734242X08091865

Khater, E. G. (2015). Some Physical and Chemical Properties of Compost.
DOI 10.4172/2252-5211.1000172

Kilian, E., & Macedowska-Capiga, A. (2011). Parametr AT4 jako wskaźnik stopnia stabilizacji odpadów po mechaniczno-biologicznym przetworzeniu. Prace Instytutu Ceramiki i Materiałów Budowlanych, R. 4, nr 8, 88–94

Kowaljow, E., & Mazzarino, M. (2007). Soil restoration in semiarid Patagonia: Chemical and biological response to different compost quality. Soil Biology and Biochemistry, 39(7), 1580–1588.
DOI 10.1016/j.soilbio.2007.01.008

Kupper, T., Bürge, D., Bachmann, H. J., Güsewell, S., & Mayer, J. (2014). Heavy metals in source-separated compost and digestates. Waste Management, 34(5), 867–874.
DOI 10.1016/j.wasman.2014.02.007

Li, Q., Wang, X. C., Zhang, H. H., Shi, H. L., Hu, T., & Ngo, H. H. (2013). Characteristics of nitrogen transformation and microbial community in an aerobic composting reactor under two typical temperatures. Bioresource Technology, 137, 270–277.
DOI 10.1016/j.biortech.2013.03.092

Liao, P. H., Jones, L., Lau, A. K., Walkemeyer, S., Egan, B., & Holbek, N. (1997). Composting of fish wastes in a full-scale invessel system. Bioresource Technology, 59(2), 163–168.
DOI 10.1016/S0960-8524(96)00153-8

Malhotra, H., Vandana, Sharma, S., & Pandey, R. (2018). Phosphorus Nutrition: Plant Growth in Response to Deficiency and Excess. In M. Hasanuzzaman, M. Fujita, H. Oku, K. Nahar, & B. Hawrylak-Nowak (Eds.), Plant Nutrients and Abiotic Stress Tolerance (pp. 171–190). Springer.
DOI 10.1007/978-981-10-9044-8_7

Mangkoedihardjo, S. (2006). Revaluation of maturity and stability indices for compost. Journal of Applied Sciences and Environmental Management, 10(3), 83–85.
DOI 10.4314/jasem.v10i3.17324

Marsh, S. (2016). The rise of vegan teenagers: ‘More people are into it because of Instagram’. Guardian. https://www.theguardian.com/lifeandstyle/2016/may/27/the-rise-of-vegan-teenagers-more-people-are-into-it-because-of-instagram?CMP=fb_gu

Meshref, A. M. S., Moselhy, W. A., & Hassan, N. E.-H. Y. (2014). Heavy metals and trace elements levels in milk and milk products. Journal of Food Measurement and Characterization, 8(4), 381–388.
DOI 10.1007/s11694-014-9203-6

MicroBioTest Inc. (2004). Phytotoxkit.: Seed germination and early growth microbiotest with higher plants. Standard Operational Procedure

Nieves-Cordones, M., Al Shiblawi, F. R., & Sentenac, H. (2016). Roles and Transport of Sodium and Potassium in Plants. In A. Sigel, H. Sigel, & R. K. O. Sigel (Eds.), The Alkali Metal Ions: Their Role for Life (pp. 291–324). Springer International Publishing.
DOI 10.1007/978-3-319-21756-7_9

Norman, K., & Klaus, S. (2020). Veganism, aging and longevity: New insight into old concepts. Current Opinion in Clinical Nutrition and Metabolic Care, 23(2), 145–150.
DOI 10.1097/MCO.0000000000000625

Paradelo, R., Villada, A., Devesa-Rey, R., Belén Moldes, A., Domínguez, M., Patiño, J., & Teresa Barral, M. (2011). Distribution and availability of trace elements in municipal solid waste composts. Journal of Environmental Monitoring, 13(1), 201–211.
DOI 10.1039/C0EM00408A

Pellejero, G., Miglierina, A., Aschkar, G., Turcato, M., & Jiménez-Ballesta, R. (2017). Effects of the onion residue compost as an organic fertilizer in a vegetable culture in the Lower Valley of the Rio Negro. International Journal of Recycling of Organic Waste in Agriculture, 6(2), 159–166.
DOI 10.1007/s40093-017-0164-8

Polish Committee for Standardization. (1997). PN-Z-15009:1997—Solid waste—Preparation of a water extract

Polish Committee for Standardization. (2011a). PN-EN 14346:2011—Characterization of waste—Calculation of the dry matter from the determination of the dry residue or the water content

Polish Committee for Standardization. (2011b). PN-EN 15169:2011—Characterization of waste—Determination of loss on ignition of waste and sludge

Qiao, L., & Ho, G. (1997). The effects of clay amendment on composting of digested sludge. Water Research, 31(5), 1056–1064.
DOI 10.1016/S0043-1354(96)00289-8

Quina, M. J., Soares, M. A. R., & Quinta-Ferreira, R. (2017). Applications of industrial eggshell as a valuable anthropogenic resource. Resources, Conservation and Recycling, 123, 176–186.
DOI 10.1016/j.resconrec.2016.09.027

Radziemska, M., Vaverková, M. D., Adamcová, D., Brtnický, M., & Mazur, Z. (2019). Valorization of Fish Waste Compost as a Fertilizer for Agricultural Use. Waste and Biomass Valorization, 10(9), 2537–2545.
DOI 10.1007/s12649-018-0288-8

Rami, T. (2014). Veganism in Seven Decades. New York Magazine. https://nymag.com/news/intelligencer/vegan-celebrities-2014-1/

Ringer, C. E., Millner, P. D., Teerlinck, L. M., & Lyman, B. W. (1997). Suppression of Seedling Damping-off Disease in Potting Mix Containing Animal Manure Composts. Compost Science & Utilization, 5(2), 6–14.
DOI 10.1080/1065657X.1997.10701869

Ros, M., Klammer, S., Knapp, B., Aichberger, K., & Insam, H. (2006). Long-term effects of compost amendment of soil on functional and structural diversity and microbial activity. Soil Use and Management, 22(2), 209–218.
DOI 10.1111/j.1475-2743.2006.00027.x

Rosen, V., & Chen, Y. (2014). The influence of compost addition on heavy metal distribution between operationally defined geochemical fractions and on metal accumulation in plant. Journal of Soils and Sediments, 14(4), 713–720.
DOI 10.1007/s11368-013-0819-7

Ruby, M. B. (2012). Vegetarianism. A blossoming field of study. Appetite, 58(1), 141–150.
DOI 10.1016/j.appet.2011.09.019

Ruusunen, M., & Puolanne, E. (2005). Reducing sodium intake from meat products. Meat Science, 70(3), 531–541.
DOI 10.1016/j.meatsci.2004.07.016

Sánchez-Monedero, M. A., Roig, A., Paredes, C., & Bernal, M. P. (2001). Nitrogen transformation during organic waste composting by the Rutgers system and its effects on pH, EC and maturity of the composting mixtures. Bioresource Technology, 78(3), 301–308.
DOI 10.1016/S0960-8524(01)00031-1

Selim, S., Zayed, M., & Atta, H. (2011). Evaluation of phytotoxicity of compost during composting process. Nature and Science, 10, 469–475

Shahbazi, Y., Ahmadi, F., & Fakhari, F. (2016). Voltammetric determination of Pb, Cd, Zn, Cu and Se in milk and dairy products collected from Iran: An emphasis on permissible limits and risk assessment of exposure to heavy metals. Food Chemistry, 192, 1060–1067.
DOI 10.1016/j.foodchem.2015.07.123

Siemiątkowski, G. (2012). Mechaniczno-biologiczne przetwarzanie frakcji biodegradowalnej odpadów komunalnych: Przewodnik po wybranych technologiach oraz metodach badań i oceny odpadów powstałych w tych procesach. Opole: Wydawnictwo Instytut Śląski. https://integro.bs.katowice.pl/32402964357/ksiazka/mechaniczno-biologiczne-przetwarzanie-frakcji-biodegradowalnej-odpadow-komunalnych?bibFilter=3

Smith, S. R. (2009). A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environment International, 35(1), 142–156.
DOI 10.1016/j.envint.2008.06.009

Song, B., Manu, M. K., Li, D., Wang, C., Varjani, S., Ladumor, N., Michael, L., Xu, Y., & Wong, J. W. C. (2021). Food waste digestate composting: Feedstock optimization with sawdust and mature compost. Bioresource Technology, 341, 125759.
DOI 10.1016/j.biortech.2021.125759

Stegenta, S., Sobieraj, K., Pilarski, G., Koziel, J. A., & Białowiec, A. (2019). Analysis of the Spatial and Temporal Distribution of Process Gases within Municipal Biowaste Compost. Sustainability, 11(8), 2340.
DOI 10.3390/su11082340

Storino, F., Arizmendiarrieta, J. S., Irigoyen, I., Muro, J., & Aparicio-Tejo, P. M. (2016). Meat waste as feedstock for home composting: Effects on the process and quality of compost. Waste Management, 56, 53–62.
DOI 10.1016/j.wasman.2016.07.004

Tawakkoly, B., Alizadehdakhel, A., & Dorosti, F. (2019). Evaluation of COD and turbidity removal from compost leachate wastewater using Salvia hispanica as a natural coagulant. Industrial Crops and Products, 137, 323–331.
DOI 10.1016/j.indcrop.2019.05.038

The Ministry of Agriculture and Rural Development. (2008). Regulation of the Minister of Agriculture and Rural Development of 18 June 2008 on the implementation of certain provisions of the Act on fertilizers and fertilization (Journal of Laws 2008 no. 119 item 765). The Ministry of Agriculture and Rural Development

The Vegan Society. (2014). Ripened by human determination. 70 years of The Vegan Society

Veeken, A., & Hamelers, B. (2002). Sources of Cd, Cu, Pb and Zn in biowaste. Science of The Total Environment, 300(1), 87–98.
DOI 10.1016/S0048-9697(01)01103-2

Villar, M. C., Beloso, M. C., Acea, M. J., Cabaneiro, A., González-Prieto, S. J., Carballas, M., Díaz-Raviña, M., & Carballas, T. (1993). Physical and chemical characterization of four composted urban refuses. Bioresource Technology, 45(2), 105–113.
DOI 10.1016/0960-8524(93)90098-V

Villaseñor, J., Pérez, M. A., Fernández, F. J., & Puchalski, C. M. (2011). Monitoring respiration and biological stability during sludge composting with a modified dynamic respirometer. Bioresource Technology, 102(11), 6562–6568.
DOI 10.1016/j.biortech.2011.03.080

Waegeneers, N., Hoenig, M., Goeyens, L., & De Temmerman, L. (2009). Trace elements in home-produced eggs in Belgium: Levels and spatiotemporal distribution. The Science of the Total Environment, 407(15), 4397–4402.
DOI 10.1016/j.scitotenv.2008.10.031

Wei, Y., Zhao, Y., Xi, B., Wei, Z., Li, X., & Cao, Z. (2015). Changes in phosphorus fractions during organic wastes composting from different sources. Bioresource Technology, 189, 349–356.
DOI 10.1016/j.biortech.2015.04.031

Yangui, T., Dhouib, A., Rhouma, A., & Sayadi, S. (2009). Potential of hydroxytyrosol-rich composition from olive mill wastewater as a natural disinfectant and its effect on seeds vigour response. Food Chemistry, 117(1), 1–8.
DOI 10.1016/j.foodchem.2009.03.069

Zebarth, B. J., Neilsen, G. H., Hogue, E., & Neilsen, D. (2011). Influence of organic waste amendments on selected soil physical and chemical properties. Canadian Journal of Soil Science.
DOI 10.4141/S98-074

Zhu, H., Sarkar, S., Scott, L., Danelisen, I., Trush, M. A., Jia, Z., & Li, Y. R. (2016). Doxorubicin Redox Biology: Redox Cycling, Topoisomerase Inhibition, and Oxidative Stress. Reactive Oxygen Species, 1(3), 189-198-189–198

Zhu, Y.-G., & Smith, S. E. (2001). Seed phosphorus (P) content affects growth, and P uptake of wheat plants and their association with arbuscular mycorrhizal (AM) fungi. Plant and Soil, 231(1), 105–112.
DOI 10.1023/A:1010320903592

Zucconi, F., Monaco, A., Forte, M., & Bertoldi, M. de. (1985). Phytotoxins during the stabilization of organic matter. Composting of Agricultural and Other Wastes / Edited by J.K.R. Gasser. https://agris.fao.org/agris-search/search.do?recordID=US201302647444

Zurera-Cosano, G., Moreno-Rojas, R., Salmeron-Egea, J., & Lora, R. P. (1989). Heavy metal uptake from greenhouse border soils for edible vegetables. Journal of the Science of Food and Agriculture, 49(3), 307–314.
DOI 10.1002/jsfa.2740490307