Released under CC BY-NC-ND
Copyright: © 2020 CISA Publisher
Al Arni, S. (2018). Comparison of slow and fast pyrolysis for converting biomass into fuel. Renewable Energy, 124, 197-201.
DOI 10.1016/j.renene.2017.04.060
Albers, K., Canepa, P., & Miller, J. (2008). Analyzing the Environmental Impacts of Simple Shoes (Masters). University of Santa Barbara
Arabiourrutia, M., Lopez, G., Artetxe, M., Alvarez, J., Bilbao, J., & Olazar, M. (2020). Waste tyre valorization by catalytic pyrolysis – A review. Renewable And Sustainable Energy Reviews, 129, 109932.
DOI 10.1016/j.rser.2020.109932
Aylón, E., Fernández-Colino, A., Murillo, R., Navarro, M., García, T., & Mastral, A. (2010). Valorisation of waste tyre by pyrolysis in a moving bed reactor. Waste Management, 30(7), 1220-1224.
DOI 10.1016/j.wasman.2009.10.001
Aziz, M., Rahman, M., & Molla, H. (2018). Design, fabrication and performance test of a fixed bed batch type pyrolysis plant with scrap tire in Bangladesh. Journal Of Radiation Research And Applied Sciences, 11(4), 311-316.
DOI 10.1016/j.jrras.2018.05.001
He, B.J., Zhang, Y., Yin, Y., Funk, T.L., & Riskowski, G.L. (2000). OPERATING TEMPERATURE AND RETENTION TIME EFFECTS ON THE THERMOCHEMICAL CONVERSION PROCESS OF SWINE MANURE. Transactions Of The ASAE, 43(6), 1821-1825.
DOI 10.13031/2013.3086
Baniasadi, M., Tugnoli, A., Conti, R., Torri, C., Fabbri, D., & Cozzani, V. (2016). Waste to energy valorization of poultry litter by slow pyrolysis. Renewable Energy, 90, 458-468.
DOI 10.1016/j.renene.2016.01.018
Bañón, E., Marcilla, A., García, A., Martínez, P., & León, M. (2016). Kinetic model of the thermal pyrolysis of chrome tanned leather treated with NaOH under different conditions using thermogravimetric analysis. Waste Management, 48, 285-299.
DOI 10.1016/j.wasman.2015.10.012
Basu, P. (2018). Biomass gasification, pyrolysis and torrefaction (3rd ed., pp. 479-495). Elsevier
Ben, H., & Ragauskas, A. (2011). NMR Characterization of Pyrolysis Oils from Kraft Lignin. Energy & Fuels, 25(5), 2322-2332.
DOI 10.1021/ef2001162
Ben, H., Wu, F., Wu, Z., Han, G., Jiang, W., & Ragauskas, A. (2019). A Comprehensive Characterization of Pyrolysis Oil from Softwood Barks. Polymers, 11(9), 1387.
DOI 10.3390/polym11091387
Channiwala, S., & Parikh, P. (2002). A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel, 81(8), 1051-1063.
DOI 10.1016/s0016-2361(01)00131-4
Chiaramonti, D., Oasmaa, A., & Solantausta, Y. (2007). Power generation using fast pyrolysis liquids from biomass. Renewable And Sustainable Energy Reviews, 11(6), 1056-1086.
DOI 10.1016/j.rser.2005.07.008
Chrobot, P., Faist, M., Gustavus, L., Martin, A., Stamm, A., Zah, R., & Zollinge, M. (2018). Measuring fashion: Environmental impact of the global apparel and footwear industries study. Full report and methodological considerations. Lausanne: Quantis
Chowdhury, Z., Ahmed, T., Antunes, P., & Paul, H. (2018). Environmental Life Cycle Assessment of Leather Processing Industry: A Case Study of Bangladesh. Journal- Society Of Leather Technologists And Chemists, 102. Retrieved 11 November 2020, from
Czajczyńska, D., Nannou, T., Anguilano, L., Krzyżyńska, R., Ghazal, H., Spencer, N., & Jouhara, H. (2017). Potentials of pyrolysis processes in the waste management sector. Energy Procedia, 123, 387-394.
DOI 10.1016/j.egypro.2017.07.275
Demirbas, A. (2016). Calculation of higher heating values of fatty acids. Energy Sources, Part A: Recovery, Utilization, And Environmental Effects, 38(18), 2693-2697.
DOI 10.1080/15567036.2015.1115924
Dinçer, I., & Zamfirescu, C. (2014). Advanced power generation systems. Elsevier
Dhyani, V., & Bhaskar, T. (2018). A comprehensive review on the pyrolysis of lignocellulosic biomass. Renewable Energy, 129, 695-716.
DOI 10.1016/j.renene.2017.04.035
Fang, C., Jiang, X., Lv, G., Yan, J., Lin, X., Song, H., & Cao, J. (2018). Pyrolysis characteristics and Cr speciation of chrome-tanned leather shavings: influence of pyrolysis temperature. Energy Sources, Part A: Recovery, Utilization, And Environmental Effects, 41(7), 881-891.
DOI 10.1080/15567036.2018.1520366
Filho, A., Lange, L., de Melo, G., & Praes, G. (2016). Pyrolysis of chromium rich tanning industrial wastes and utilization of carbonized wastes in metallurgical process. Waste Management, 48, 448-456.
DOI 10.1016/j.wasman.2015.11.046
Font, R., Caballero, J., Esperanza, M., & Fullana, A. (1999). Pyrolytic products from tannery wastes. Journal Of Analytical And Applied Pyrolysis, 49(1-2), 243-256.
DOI 10.1016/s0165-2370(98)00117-x
Fyvie, E. (2018). Trash revolution: Breaking the Waste Cycle. Kids Can Press, Limited
Gao, N., Quan, C., Liu, B., Li, Z., Wu, C., & Li, A. (2017). Continuous Pyrolysis of Sewage Sludge in a Screw-Feeding Reactor: Products Characterization and Ecological Risk Assessment of Heavy Metals. Energy & Fuels, 31(5), 5063-5072.
DOI 10.1021/acs.energyfuels.6b03112
Getachew, P., Getachew, M., Joo, J., Choi, Y., Hwang, D., & Hong, Y. (2016). The slip agents oleamide and erucamide reduce biofouling by marine benthic organisms (diatoms, biofilms and abalones). Toxicology And Environmental Health Sciences, 8(5), 341-348.
DOI 10.1007/s13530-016-0295-8
Godinho, M., Birriel, E., Marcilio, N., Masotti, L., Martins, C., & Wenzel, B. (2011). High-temperature corrosion during the thermal treatment of footwear leather wastes. Fuel Processing Technology, 92(5), 1019-1025.
DOI 10.1016/j.fuproc.2010.12.025
Gottfridsson, M., & Zhang, Y. (2015). Environmental impacts of shoe consumption: Combining product flow analysis with an LCA model for Sweden (Masters). Chalmers University of technology
Guda, V., Steele, P., Penmetsa, V., & Li, Q. (2015). Fast Pyrolysis of Biomass: Recent Advances in Fast Pyrolysis Technology. In A. Pandey, M. Stöcker, T. Bhaskar & R. Sukumaran, Recent Advances in Thermochemical Conversion of Biomass (pp. 177-211). Elsevier. Retrieved 12 November 2020, from
He, X., Liu, Z., Niu, W., Yang, L., Zhou, T., & Qin, D. et al. (2018). Effects of pyrolysis temperature on the physicochemical properties of gas and biochar obtained from pyrolysis of crop residues. Energy, 143, 746-756.
DOI 10.1016/j.energy.2017.11.062
Hedberg, Y., Lidén, C., & Odnevall Wallinder, I. (2015). Chromium released from leather – I: exposure conditions that govern the release of chromium( III ) and chromium( VI ). Contact Dermatitis, 72(4), 206-215.
DOI 10.1111/cod.12329
Hirvonen, P. (2017). The potential of waste tyre and waste plastics pyrolysis in Southern Savonia region (Masters). Lappeenranta University of Technology
Islam, M., Islam, M., Mustafi, N., Rahim, M., & Haniu, H. (2013). Thermal Recycling of Solid Tire Wastes for Alternative Liquid Fuel: The First Commercial Step in Bangladesh. Procedia Engineering, 56, 573-582.
DOI 10.1016/j.proeng.2013.03.162
Januszewicz, K., Klein, M., Klugmann-Radziemska, E., & Kardas, D. (2016). Thermogravimetric analysis/pyrolysis of used tyres and waste rubber. Physicochemical Problems Of Mineral Processing, 53, 802−811.
DOI 10.1515/cpe-2017-0028
Jo, J., Kim, S., Shim, J., Lee, Y., & Yoo, Y. (2017). Pyrolysis Characteristics and Kinetics of Food Wastes. Energies, 10(8), 1191.
DOI 10.3390/en10081191
Joseph, K., & Nithya, N. (2009). Material flows in the life cycle of leather. Journal Of Cleaner Production, 17(7), 676-682.
DOI 10.1016/j.jclepro.2008.11.018
Kaur, R., Rani, V., Abbot, V., Kapoor, Y., Konar, D., & Kumar, K. (2017). Recent synthetic and medicinal perspectives of pyrroles: An overview. Journal Of Pharmaceutical Chemistry & Chemical Science, 1, 17-32. Retrieved 12 November 2020, from
Kluska, J., Ochnio, M., Kardaś, D., & Heda, Ł. (2019). The influence of temperature on the physicochemical properties of products of pyrolysis of leather-tannery waste. Waste Management, 88, 248-256.
DOI 10.1016/j.wasman.2019.03.046
Kolomaznik, K., Adamek, M., Andel, I., & Uhlirova, M. (2008). Leather waste—Potential threat to human health, and a new technology of its treatment. Journal Of Hazardous Materials, 160(2-3), 514-520.
DOI 10.1016/j.jhazmat.2008.03.070
Lopez, G., Alvarez, J., Amutio, M., Mkhize, N., Danon, B., & van der Gryp, P. et al. (2017). Waste truck-tyre processing by flash pyrolysis in a conical spouted bed reactor. Energy Conversion And Management, 142, 523-532.
DOI 10.1016/j.enconman.2017.03.051
Marcilla, A., León, M., García, Á., Bañón, E., & Martínez, P. (2012). Upgrading of Tannery Wastes under Fast and Slow Pyrolysis Conditions. Industrial & Engineering Chemistry Research, 51(8), 3246-3255.
DOI 10.1021/ie201635w
Meier, D., van de Beld, B., Bridgwater, A., Elliott, D., Oasmaa, A., & Preto, F. (2013). State-of-the-art of fast pyrolysis in IEA bioenergy member countries. Renewable And Sustainable Energy Reviews, 20, 619-641.
DOI 10.1016/j.rser.2012.11.061
Mia, A., Murad, W., Ahmad, F., & Uddin, K. (2017). Waste Management & Quality Assessment of Footwear Manufacturing Industry in Bangladesh: An Innovative Approach. International Journal Of Engineering Management, 7. Retrieved 11 November 2020, from
Mkhize, N., Sithole, B., & Ntunka, M. (2015). Heterogeneous Acid-Catalyzed Biodiesel Production from Crude Tall Oil: A Low-Grade and Less Expensive Feedstock. Journal Of Wood Chemistry And Technology, 35(5), 374-385.
DOI 10.1080/02773813.2014.984079
Morales, S., Miranda, R., Bustos, D., Cazares, T., & Tran, H. (2014). Solar biomass pyrolysis for the production of bio-fuels and chemical commodities. Journal Of Analytical And Applied Pyrolysis, 109, 65-78.
DOI 10.1016/j.jaap.2014.07.012
Murugan, S., Ramaswamy, M., & Nagarajan, G. (2008). The use of tyre pyrolysis oil in diesel engines. Waste Management, 28(12), 2743-2749.
DOI 10.1016/j.wasman.2008.03.007
National Center for Biotechnology Information. (2020a). PubChem Compound Summary for CID 31292, Octadecanamide. Pubchem.ncbi.nlm.nih.gov. Retrieved 27 September 2020, from https://pubchem.ncbi.nlm.nih.gov/compound/Octadecanamide
National Center for Biotechnology Information. (2020b). PubChem Compound Summary for CID 8214, 13-Docosenamide, (13Z)-. Pubchem.ncbi.nlm.nih.gov. Retrieved 27 September 2020, from https://pubchem.ncbi.nlm.nih.gov/compound/13-Docosenamide_-_13Z
Olazar, M., Lopez, G., Amutio, M., Elordi, G., Aguado, R., & Bilbao, J. (2009). Influence of FCC catalyst steaming on HDPE pyrolysis product distribution. Journal Of Analytical And Applied Pyrolysis, 85(1-2), 359-365.
DOI 10.1016/j.jaap.2008.10.016
Perondi, D., Scopel, B., Collazzo, G., Silva, J., Botomé, M., & Dettmer, A. et al. (2016). Characteristics of Pyrolysis Products from Waste Tyres and Spent Foundry Sand Co-Pyrolysis. Progress In Rubber Plastics And Recycling Technology, 32(4), 213-240.
DOI 10.1177/147776061603200403
Pham, X., Piriou, B., Salvador, S., Valette, J., & Van de Steene, L. (2018). Oxidative pyrolysis of pine wood, wheat straw and miscanthus pellets in a fixed bed. Fuel Processing Technology, 178, 226-235.
DOI 10.1016/j.fuproc.2018.05.029
Portuguese Shoes. (2018). World Footwear Yearbook: Intelligence to drive your business. Portuguese Shoes
Rodrigues, R., Marcilio, N., Trierweiler, J., Godinho, M., & Pereira, A. (2010). Co-Gasification of Footwear Leather Waste and High Ash Coal: A Thermodynamic Analysis. In The 27th Annual International Pittsburgh coal conference. Istanbul. Retrieved 12 November 2020, from
Ronsse, F., van Hecke, S., Dickinson, D., & Prins, W. (2012). Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. GCB Bioenergy, 5(2), 104-115.
DOI 10.1111/gcbb.12018
Sethuraman, C., Srinivas, K., & Sekaran, G. (2013). Double Pyrolysis of Chrome Tanned Leather Solid Waste for Safe Disposal and Products Recovery. International Journal Of Engineering Research, 4. Retrieved 11 November 2020, from
Sethuraman, C., Srinivas, K., & Sekaran, G. (2014). Pyrolysis coupled pulse oxygen incineration for disposal of hazardous chromium impregnated fine particulate solid waste generated from leather industry. Journal Of Environmental Chemical Engineering, 2(1), 516-524.
DOI 10.1016/j.jece.2013.10.006
Sharuddin, S., Abnisa, F., Daud, W., & Aroua, M. (2016). A review on pyrolysis of plastic wastes. Energy Conversion And Management, 115, 308-326. Retrieved 11 November 2020, from
Sørum, L., Grønli, M., & Hustad, J. (2001). Pyrolysis characteristics and kinetics of municipal solid wastes. Fuel, 80(9), 1217-1227.
DOI 10.1016/s0016-2361(00)00218-0
Staikos, T., Rahimifard, S., Heath, R., & Haworth, B. (2006). End-of-life management of shoes and the role of biodegradable materials. In Proceedings of the 13th CIRP international conference on Life Cycle Engineering (LCE) (pp. 497–502). Bardos; Loughborough: Centre for Sustainable Manufacturing and Recycling Technologies (SMART). Retrieved 12 November 2020, from
Wei, X., Koo, I., Kim, S., & Zhang, X. (2014). Compound identification in GC-MS by simultaneously evaluating the mass spectrum and retention index. The Analyst, 139(10), 2507-2514.
DOI 10.1039/c3an02171h
Weldekidan, H., Strezov, V., & Town, G. (2018). Review of solar energy for biofuel extraction. Renewable And Sustainable Energy Reviews, 88, 184-192.
DOI 10.1016/j.rser.2018.02.027
Xiao, R., & Yang, W. (2013). Influence of temperature on organic structure of biomass pyrolysis products. Renewable Energy, 50, 136-141.
DOI 10.1016/j.renene.2012.06.028
Yılmaz, O., Cem Kantarli, I., Yuksel, M., Saglam, M., & Yanik, J. (2007). Conversion of leather wastes to useful products. Resources, Conservation And Recycling, 49(4), 436-448.
DOI 10.1016/j.resconrec.2006.05.006
Zhang, Q., Chang, J., Wang, T., & Xu, Y. (2007). Review of biomass pyrolysis oil properties and upgrading research. Energy Conversion And Management, 48(1), 87-92.
DOI 10.1016/j.enconman.2006.05.010
Ian D. Williams, Toby J. Roberts, Lina Maria Zapata-Restrepo, Maria Neophytou, Angelos Ktoris, Androniki Maragkidou and Jukka-Pekka Jalkanen
Published 31 Mar 2021Beatriz Amante Garca, Ana Puig, Joan LLuis Zamora, Joan Moreno and Alberto Sanfeliu
Published 31 Mar 2021Ana Maria Rodrigues Costa de Castro, Lea Loretta Zentgraf, Cézar D. Luquine Jr., Ribka Metaferia and Daniel Juan Sivizaca Conde
Published 31 Mar 2021Title | Support | Price |
---|