Released under CC BY-NC-ND
Copyright: © 2020 CISA Publisher
Al Arni, S. (2018). Comparison of slow and fast pyrolysis for converting biomass into fuel. Renewable Energy, 124, 197-201.
DOI 10.1016/j.renene.2017.04.060
Albers, K., Canepa, P., & Miller, J. (2008). Analyzing the Environmental Impacts of Simple Shoes (Masters). University of Santa Barbara
Arabiourrutia, M., Lopez, G., Artetxe, M., Alvarez, J., Bilbao, J., & Olazar, M. (2020). Waste tyre valorization by catalytic pyrolysis – A review. Renewable And Sustainable Energy Reviews, 129, 109932.
DOI 10.1016/j.rser.2020.109932
Aylón, E., Fernández-Colino, A., Murillo, R., Navarro, M., García, T., & Mastral, A. (2010). Valorisation of waste tyre by pyrolysis in a moving bed reactor. Waste Management, 30(7), 1220-1224.
DOI 10.1016/j.wasman.2009.10.001
Aziz, M., Rahman, M., & Molla, H. (2018). Design, fabrication and performance test of a fixed bed batch type pyrolysis plant with scrap tire in Bangladesh. Journal Of Radiation Research And Applied Sciences, 11(4), 311-316.
DOI 10.1016/j.jrras.2018.05.001
He, B.J., Zhang, Y., Yin, Y., Funk, T.L., & Riskowski, G.L. (2000). OPERATING TEMPERATURE AND RETENTION TIME EFFECTS ON THE THERMOCHEMICAL CONVERSION PROCESS OF SWINE MANURE. Transactions Of The ASAE, 43(6), 1821-1825.
DOI 10.13031/2013.3086
Baniasadi, M., Tugnoli, A., Conti, R., Torri, C., Fabbri, D., & Cozzani, V. (2016). Waste to energy valorization of poultry litter by slow pyrolysis. Renewable Energy, 90, 458-468.
DOI 10.1016/j.renene.2016.01.018
Bañón, E., Marcilla, A., García, A., Martínez, P., & León, M. (2016). Kinetic model of the thermal pyrolysis of chrome tanned leather treated with NaOH under different conditions using thermogravimetric analysis. Waste Management, 48, 285-299.
DOI 10.1016/j.wasman.2015.10.012
Basu, P. (2018). Biomass gasification, pyrolysis and torrefaction (3rd ed., pp. 479-495). Elsevier
Ben, H., & Ragauskas, A. (2011). NMR Characterization of Pyrolysis Oils from Kraft Lignin. Energy & Fuels, 25(5), 2322-2332.
DOI 10.1021/ef2001162
Ben, H., Wu, F., Wu, Z., Han, G., Jiang, W., & Ragauskas, A. (2019). A Comprehensive Characterization of Pyrolysis Oil from Softwood Barks. Polymers, 11(9), 1387.
DOI 10.3390/polym11091387
Channiwala, S., & Parikh, P. (2002). A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel, 81(8), 1051-1063.
DOI 10.1016/s0016-2361(01)00131-4
Chiaramonti, D., Oasmaa, A., & Solantausta, Y. (2007). Power generation using fast pyrolysis liquids from biomass. Renewable And Sustainable Energy Reviews, 11(6), 1056-1086.
DOI 10.1016/j.rser.2005.07.008
Chrobot, P., Faist, M., Gustavus, L., Martin, A., Stamm, A., Zah, R., & Zollinge, M. (2018). Measuring fashion: Environmental impact of the global apparel and footwear industries study. Full report and methodological considerations. Lausanne: Quantis
Chowdhury, Z., Ahmed, T., Antunes, P., & Paul, H. (2018). Environmental Life Cycle Assessment of Leather Processing Industry: A Case Study of Bangladesh. Journal- Society Of Leather Technologists And Chemists, 102. Retrieved 11 November 2020, from
Czajczyńska, D., Nannou, T., Anguilano, L., Krzyżyńska, R., Ghazal, H., Spencer, N., & Jouhara, H. (2017). Potentials of pyrolysis processes in the waste management sector. Energy Procedia, 123, 387-394.
DOI 10.1016/j.egypro.2017.07.275
Demirbas, A. (2016). Calculation of higher heating values of fatty acids. Energy Sources, Part A: Recovery, Utilization, And Environmental Effects, 38(18), 2693-2697.
DOI 10.1080/15567036.2015.1115924
Dinçer, I., & Zamfirescu, C. (2014). Advanced power generation systems. Elsevier
Dhyani, V., & Bhaskar, T. (2018). A comprehensive review on the pyrolysis of lignocellulosic biomass. Renewable Energy, 129, 695-716.
DOI 10.1016/j.renene.2017.04.035
Fang, C., Jiang, X., Lv, G., Yan, J., Lin, X., Song, H., & Cao, J. (2018). Pyrolysis characteristics and Cr speciation of chrome-tanned leather shavings: influence of pyrolysis temperature. Energy Sources, Part A: Recovery, Utilization, And Environmental Effects, 41(7), 881-891.
DOI 10.1080/15567036.2018.1520366
Filho, A., Lange, L., de Melo, G., & Praes, G. (2016). Pyrolysis of chromium rich tanning industrial wastes and utilization of carbonized wastes in metallurgical process. Waste Management, 48, 448-456.
DOI 10.1016/j.wasman.2015.11.046
Font, R., Caballero, J., Esperanza, M., & Fullana, A. (1999). Pyrolytic products from tannery wastes. Journal Of Analytical And Applied Pyrolysis, 49(1-2), 243-256.
DOI 10.1016/s0165-2370(98)00117-x
Fyvie, E. (2018). Trash revolution: Breaking the Waste Cycle. Kids Can Press, Limited
Gao, N., Quan, C., Liu, B., Li, Z., Wu, C., & Li, A. (2017). Continuous Pyrolysis of Sewage Sludge in a Screw-Feeding Reactor: Products Characterization and Ecological Risk Assessment of Heavy Metals. Energy & Fuels, 31(5), 5063-5072.
DOI 10.1021/acs.energyfuels.6b03112
Getachew, P., Getachew, M., Joo, J., Choi, Y., Hwang, D., & Hong, Y. (2016). The slip agents oleamide and erucamide reduce biofouling by marine benthic organisms (diatoms, biofilms and abalones). Toxicology And Environmental Health Sciences, 8(5), 341-348.
DOI 10.1007/s13530-016-0295-8
Godinho, M., Birriel, E., Marcilio, N., Masotti, L., Martins, C., & Wenzel, B. (2011). High-temperature corrosion during the thermal treatment of footwear leather wastes. Fuel Processing Technology, 92(5), 1019-1025.
DOI 10.1016/j.fuproc.2010.12.025
Gottfridsson, M., & Zhang, Y. (2015). Environmental impacts of shoe consumption: Combining product flow analysis with an LCA model for Sweden (Masters). Chalmers University of technology
Guda, V., Steele, P., Penmetsa, V., & Li, Q. (2015). Fast Pyrolysis of Biomass: Recent Advances in Fast Pyrolysis Technology. In A. Pandey, M. Stöcker, T. Bhaskar & R. Sukumaran, Recent Advances in Thermochemical Conversion of Biomass (pp. 177-211). Elsevier. Retrieved 12 November 2020, from
He, X., Liu, Z., Niu, W., Yang, L., Zhou, T., & Qin, D. et al. (2018). Effects of pyrolysis temperature on the physicochemical properties of gas and biochar obtained from pyrolysis of crop residues. Energy, 143, 746-756.
DOI 10.1016/j.energy.2017.11.062
Hedberg, Y., Lidén, C., & Odnevall Wallinder, I. (2015). Chromium released from leather – I: exposure conditions that govern the release of chromium( III ) and chromium( VI ). Contact Dermatitis, 72(4), 206-215.
DOI 10.1111/cod.12329
Hirvonen, P. (2017). The potential of waste tyre and waste plastics pyrolysis in Southern Savonia region (Masters). Lappeenranta University of Technology
Islam, M., Islam, M., Mustafi, N., Rahim, M., & Haniu, H. (2013). Thermal Recycling of Solid Tire Wastes for Alternative Liquid Fuel: The First Commercial Step in Bangladesh. Procedia Engineering, 56, 573-582.
DOI 10.1016/j.proeng.2013.03.162
Januszewicz, K., Klein, M., Klugmann-Radziemska, E., & Kardas, D. (2016). Thermogravimetric analysis/pyrolysis of used tyres and waste rubber. Physicochemical Problems Of Mineral Processing, 53, 802−811.
DOI 10.1515/cpe-2017-0028
Jo, J., Kim, S., Shim, J., Lee, Y., & Yoo, Y. (2017). Pyrolysis Characteristics and Kinetics of Food Wastes. Energies, 10(8), 1191.
DOI 10.3390/en10081191
Joseph, K., & Nithya, N. (2009). Material flows in the life cycle of leather. Journal Of Cleaner Production, 17(7), 676-682.
DOI 10.1016/j.jclepro.2008.11.018
Kaur, R., Rani, V., Abbot, V., Kapoor, Y., Konar, D., & Kumar, K. (2017). Recent synthetic and medicinal perspectives of pyrroles: An overview. Journal Of Pharmaceutical Chemistry & Chemical Science, 1, 17-32. Retrieved 12 November 2020, from
Kluska, J., Ochnio, M., Kardaś, D., & Heda, Ł. (2019). The influence of temperature on the physicochemical properties of products of pyrolysis of leather-tannery waste. Waste Management, 88, 248-256.
DOI 10.1016/j.wasman.2019.03.046
Kolomaznik, K., Adamek, M., Andel, I., & Uhlirova, M. (2008). Leather waste—Potential threat to human health, and a new technology of its treatment. Journal Of Hazardous Materials, 160(2-3), 514-520.
DOI 10.1016/j.jhazmat.2008.03.070
Lopez, G., Alvarez, J., Amutio, M., Mkhize, N., Danon, B., & van der Gryp, P. et al. (2017). Waste truck-tyre processing by flash pyrolysis in a conical spouted bed reactor. Energy Conversion And Management, 142, 523-532.
DOI 10.1016/j.enconman.2017.03.051
Marcilla, A., León, M., García, Á., Bañón, E., & Martínez, P. (2012). Upgrading of Tannery Wastes under Fast and Slow Pyrolysis Conditions. Industrial & Engineering Chemistry Research, 51(8), 3246-3255.
DOI 10.1021/ie201635w
Meier, D., van de Beld, B., Bridgwater, A., Elliott, D., Oasmaa, A., & Preto, F. (2013). State-of-the-art of fast pyrolysis in IEA bioenergy member countries. Renewable And Sustainable Energy Reviews, 20, 619-641.
DOI 10.1016/j.rser.2012.11.061
Mia, A., Murad, W., Ahmad, F., & Uddin, K. (2017). Waste Management & Quality Assessment of Footwear Manufacturing Industry in Bangladesh: An Innovative Approach. International Journal Of Engineering Management, 7. Retrieved 11 November 2020, from
Mkhize, N., Sithole, B., & Ntunka, M. (2015). Heterogeneous Acid-Catalyzed Biodiesel Production from Crude Tall Oil: A Low-Grade and Less Expensive Feedstock. Journal Of Wood Chemistry And Technology, 35(5), 374-385.
DOI 10.1080/02773813.2014.984079
Morales, S., Miranda, R., Bustos, D., Cazares, T., & Tran, H. (2014). Solar biomass pyrolysis for the production of bio-fuels and chemical commodities. Journal Of Analytical And Applied Pyrolysis, 109, 65-78.
DOI 10.1016/j.jaap.2014.07.012
Murugan, S., Ramaswamy, M., & Nagarajan, G. (2008). The use of tyre pyrolysis oil in diesel engines. Waste Management, 28(12), 2743-2749.
DOI 10.1016/j.wasman.2008.03.007
National Center for Biotechnology Information. (2020a). PubChem Compound Summary for CID 31292, Octadecanamide. Pubchem.ncbi.nlm.nih.gov. Retrieved 27 September 2020, from https://pubchem.ncbi.nlm.nih.gov/compound/Octadecanamide
National Center for Biotechnology Information. (2020b). PubChem Compound Summary for CID 8214, 13-Docosenamide, (13Z)-. Pubchem.ncbi.nlm.nih.gov. Retrieved 27 September 2020, from https://pubchem.ncbi.nlm.nih.gov/compound/13-Docosenamide_-_13Z
Olazar, M., Lopez, G., Amutio, M., Elordi, G., Aguado, R., & Bilbao, J. (2009). Influence of FCC catalyst steaming on HDPE pyrolysis product distribution. Journal Of Analytical And Applied Pyrolysis, 85(1-2), 359-365.
DOI 10.1016/j.jaap.2008.10.016
Perondi, D., Scopel, B., Collazzo, G., Silva, J., Botomé, M., & Dettmer, A. et al. (2016). Characteristics of Pyrolysis Products from Waste Tyres and Spent Foundry Sand Co-Pyrolysis. Progress In Rubber Plastics And Recycling Technology, 32(4), 213-240.
DOI 10.1177/147776061603200403
Pham, X., Piriou, B., Salvador, S., Valette, J., & Van de Steene, L. (2018). Oxidative pyrolysis of pine wood, wheat straw and miscanthus pellets in a fixed bed. Fuel Processing Technology, 178, 226-235.
DOI 10.1016/j.fuproc.2018.05.029
Portuguese Shoes. (2018). World Footwear Yearbook: Intelligence to drive your business. Portuguese Shoes
Rodrigues, R., Marcilio, N., Trierweiler, J., Godinho, M., & Pereira, A. (2010). Co-Gasification of Footwear Leather Waste and High Ash Coal: A Thermodynamic Analysis. In The 27th Annual International Pittsburgh coal conference. Istanbul. Retrieved 12 November 2020, from
Ronsse, F., van Hecke, S., Dickinson, D., & Prins, W. (2012). Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. GCB Bioenergy, 5(2), 104-115.
DOI 10.1111/gcbb.12018
Sethuraman, C., Srinivas, K., & Sekaran, G. (2013). Double Pyrolysis of Chrome Tanned Leather Solid Waste for Safe Disposal and Products Recovery. International Journal Of Engineering Research, 4. Retrieved 11 November 2020, from
Sethuraman, C., Srinivas, K., & Sekaran, G. (2014). Pyrolysis coupled pulse oxygen incineration for disposal of hazardous chromium impregnated fine particulate solid waste generated from leather industry. Journal Of Environmental Chemical Engineering, 2(1), 516-524.
DOI 10.1016/j.jece.2013.10.006
Sharuddin, S., Abnisa, F., Daud, W., & Aroua, M. (2016). A review on pyrolysis of plastic wastes. Energy Conversion And Management, 115, 308-326. Retrieved 11 November 2020, from
Sørum, L., Grønli, M., & Hustad, J. (2001). Pyrolysis characteristics and kinetics of municipal solid wastes. Fuel, 80(9), 1217-1227.
DOI 10.1016/s0016-2361(00)00218-0
Staikos, T., Rahimifard, S., Heath, R., & Haworth, B. (2006). End-of-life management of shoes and the role of biodegradable materials. In Proceedings of the 13th CIRP international conference on Life Cycle Engineering (LCE) (pp. 497–502). Bardos; Loughborough: Centre for Sustainable Manufacturing and Recycling Technologies (SMART). Retrieved 12 November 2020, from
Wei, X., Koo, I., Kim, S., & Zhang, X. (2014). Compound identification in GC-MS by simultaneously evaluating the mass spectrum and retention index. The Analyst, 139(10), 2507-2514.
DOI 10.1039/c3an02171h
Weldekidan, H., Strezov, V., & Town, G. (2018). Review of solar energy for biofuel extraction. Renewable And Sustainable Energy Reviews, 88, 184-192.
DOI 10.1016/j.rser.2018.02.027
Xiao, R., & Yang, W. (2013). Influence of temperature on organic structure of biomass pyrolysis products. Renewable Energy, 50, 136-141.
DOI 10.1016/j.renene.2012.06.028
Yılmaz, O., Cem Kantarli, I., Yuksel, M., Saglam, M., & Yanik, J. (2007). Conversion of leather wastes to useful products. Resources, Conservation And Recycling, 49(4), 436-448.
DOI 10.1016/j.resconrec.2006.05.006
Zhang, Q., Chang, J., Wang, T., & Xu, Y. (2007). Review of biomass pyrolysis oil properties and upgrading research. Energy Conversion And Management, 48(1), 87-92.
DOI 10.1016/j.enconman.2006.05.010
Amy Brooks, Nicole Bell, Jenna Jambeck, Madison Werner and Melissa Bilec
Published 31 Mar 2021Ian D. Williams, Toby J. Roberts, Lina Maria Zapata-Restrepo, Maria Neophytou, Angelos Ktoris, Androniki Maragkidou and Jukka-Pekka Jalkanen
Published 31 Mar 2021Beatriz Amante Garca, Ana Puig, Joan LLuis Zamora, Joan Moreno and Alberto Sanfeliu
Published 31 Mar 2021Title | Support | Price |
---|