an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU


  • Daniel Vollprecht - Department of Environmental and Energy Process Engineering, Montanuniversität Leoben, Austria
  • Juan Carlos Hernández Parrodi - New-Mine project, Renewi Belgium SA/NV, Belgium - Department of Environmental and Energy Process Engineering, Montanuniversität Leoben, Austria
  • Hugo Ignacio Lucas - IME Process Metallurgy and Metal Recycling, RWTH Aachen University, Germany
  • Roland Pomberger - Department of Environmental and Energy Process Engineering, Montanuniversität Leoben, Austria

DOI 10.31025/2611-4135/2020.13940

Released under CC BY-NC-ND

Copyright: © 2020 CISA Publisher

Editorial History

  • Received: 05 Jan 2020
  • Revised: 24 Feb 2020
  • Accepted: 25 Feb 2020
  • Available online: 31 Mar 2020


Fine fractions obtained by mechanical processing of excavated waste constitute a challenge for (enhanced) landfill mining projects. These fractions are mainly composed of humified organic and weathered inorganic compounds, whereas metals and calorific fractions are depleted. In this study we present data on the chemical composition and grain size distribution of the fine fractions <4.5 mm, as well as on the mineralogical composition of the two finest subfractions (0.18 to 0.5 mm and <0.18 mm). Chemical analyses indicate no trend regarding the enrichment or depletion of heavy metals in the different particle size ranges. Leaching from the finer fractions is somewhat higher than from the coarser fractions (i.e. 1.6 to 4.5 mm and 0.5 to 1.6 mm), although the fraction 0.18 to 0.5 mm shows the lowest overall leaching. Pseudo-total contents of Cu, Zn, Cd, Hg and Pb and leachable contents of Ni exceed Austrian limit values for the production of soil substitutes from wastes. Electron microprobe analyses indicate that Zn and Pb, which exceed limit values for pseudo-total content, are present as Fe-Zn alloy, ZnS and ZnSO4, and metallic Pb and Pb-Ca phosphate, respectively. In summary, dry-mechanical processing, which is a feasible method in the particle size range >4.5 mm, showed a limited effect in the range <4.5 mm. Removal of Pb- and Zn-containing phases is highly challenging due to the diverse mineralogy and fine grain size of few µm. Consequently, it seems unlikely that the Austrian limit values for soil substitutes can be met.



Austrian Standards, 2013. ÖNORM S2122-2. Soils from waste - Part 2: Evaluation on the basis of fractional analyses

Bhatnagar, A., Kaczala, F., Burlakovs, J., Kriipsalu, M., Hogland, M., Hogland, W., 2017. Hunting for valuables from landfills and assessing their market opportunities. A case study with Kudjape landfill in Estonia. Waste Manag. Res. 35(6), 627-635

Blount, C., 1977. Barite solubilities and thermodynamic quantities up to 300’C and 1400 bar. Am. Min. 62, 942-957

Burlakovs, J., Jani, Y., Kriipsalu, M., Vincevica-Gaile, ZH., Kaczala, F., Celma, G., Ozola, R., Rozina, L., Rudovica, V., Hogland, M., Viksna, A., Pehme, K.-M., Hogland, W., Klavins, M. 2018. On the way to ‘zero waste’ management: Recovery potential of elements, including rare earth elements, from fine fraction of waste. J. Clean. Prod. 186, 91-90

Burlakovs, J., Kriipsalu, M., Klavins, M., Bhatnagar, A., 2017. Paradigms on landfill mining: From dump site scavenging to ecosystem services revitalization. Resour. Conserv. Recy., 123, 73-84-

Burlakovs, J., Kaczala, F., Vincevica-Gaile, Z., Rudovica, V., Orupöld, K., Stapkevica, M., Bhatnagar, A., Kriipsalu, M., Hogland, M., Klavins, M., Hogland, W., 2016. Mobility of Metals and Valorization of Sorted Fine Fractions of Waste After Landfill Excavation. Waste Biomass Valori. 7(3), 593-602

Federal Ministry for Agriculture, Forestry, Environment and Water Management, 2008. Landfill Ordincance.

Federal Ministry for Sustainability and Tourism, 2017. Federal Waste Management Plan

Frändegård, P., Krook, J., Svensson, N., 2015. Integrating remediation and resouce recovery: On the economic conditions of landfill mining. Waste Manag. 42, 137-147

García López, C., Ni, A., Hernández Parrodi, J., Küppers, B., Raulf, K., Pretz, T., 2019. Characterization of landfill mining material after ballistic separation to evaluate material and energy recovery potential. Detritus 8, 5-23

Greedy, D., 2016. Landfilling and landfill mining. Waste Manag. Res. 34(1), 1-2

Gutiérrez-Gutiérrez, S., Coulon, F., Jiang, Y., Wagland, S., 2015. Rare earth elements and critical metal content of extracted landfilled material and potential recovery opportunities. Waste Manag. 42, 128-136

Hernández Parrodi, J. C., García López, C., Küppers, B., Raulf, K., Vollprecht, D., Pretz, T., Pomberger, R., 2019a. Case study on enhanced landfill mining at Mont-Saint-Guibert landfill in Belgium: Characterization and potential of fine fractions. Detritus 8, 47-61

Hernández Parrodi, J. C., Höllen, D., Pomberger, R., 2018a. Characterization of fine fractions from landfill mining: A review of previous investigations. Detritus 2, 46-62

Hernández Parrodi, J. C., Höllen, D., Pomberger, R., 2018b. Potential and main technological challenges for material and energy recovery from fine fractions of landfill mining: A critical review. Detritus 3, 19-29

Hernández Parrodi, J. C., Lucas, H., Gigantino, M., Sauve, G., Esguerra, J. L., Einhäupl, P, Vollprecht, D., Pomberger, R., Friedrich, B., Van Acker, K., Krook, J., Svensson, N., Van Passel, S., 2019b. Integration of resource recovery into current waste management through (enhanced) landfill mining. Detritus 8, 141-156

Hernández Parrodi, J. C., Raulf, K., Vollprecht, D., Pretz, T., Pomberger, R., 2019c. Case study on enhanced landfill mining at Mont-Saint-Guibert landfill in Belgium: Mechanical processing of fine fractions for material and energy recovery. Detritus 8, 62-78

Hogland, W. H., 2010. Enhanced Landfill Mining - Material recovery, energy utilisation and economics in the EU (Directive) perspective. Proceedings of the 1st International Academic Symposium on Enhanced Landfill Mining, 4-6

Houben, D., Evrard, L., Sonnet, P., 2013. Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere 92(11), 1450-1457

Jani, Y., Kaczala, F., Marchand, C., Hogland, M., Kriipsalu, M., Hogland, W., Kihl, A., 2016. Characterisation of excavated fine fraction and waste composition from a Swedish landfill. Waste Manag. Res. 34(12), 1292-1299

Kelly, E. & Spottiswood, D., 1989. The theory of electrostatic separations: A review Part I. Fundamentals. Miner. Eng. 2(1), 33-46

Krook, J., Svensson, N., Eklund, M., 2012. Landfill mining: A critical review of two decades of research. Waste Manag. 32(3), 513-520

Küppers, B., Hernández Parrodi, J. C., García López, C., Pomberger, R., Vollprecht, D., 2019. Potential of sensor-based sorting in enhanced landfill mining. Detritus 8, 24-30

Lane, D., Cook, N., Grano, S., Ehrig, K., 2016. Selective leaching of penalty elements from copper concentrates: A review. Miner. Eng. 98, 110-121

Laner, D., Esguerra, J.L., Krook, J., Horttanainen, M., Kriipsalu, M., Rosendal, R.M., Stansiavljević, 2019. Systematic assessment of critical factors for the economic performance of landfill mining in Europe: What drives the economy of landfll mining. Waste Manag., 95, 674-686

Liebetegger, W., 2015. Landfill Mining - Charakterisierung der Fein- und heizwertreichen Fraktion. Master Thesis. Montanuniversität Leoben

Lucas, H., García López, C., Hernández Parrodi, J. C., Vollprecht, D., Raulf, K., Pomberger, R., Pretz, T., Friedrich, B., 2019. Quality assessment of non-ferrous metals in landfill mining: A case study in Belgium. Detritus 8, 79-90

Mönkäre, T. J., Palmroth, M. R., Rintala, J. A., 2016. Characterization of fine fraction mined from two Finnish landfills. Waste Manag. 47A, 34-39

Neuhold, S., van Zomeren, A., Dijkstra, J.J., van der Sloot, H.A., Drissen, P., Algermissen, D., Mudersbach, D., Schüler, S., Griessacher, T., Raith, J., Pomberger, R., Vollprecht, D., 2019. Investigation of Possible Leaching Control Mechanisms for Chromium and Vanadium in Electric Arc Furnace (EAF) Slags Using Combined Experimental and Modeling Approaches. Minerals 9, 525

Peleka, E., Gallios, G., Matis, K., 2017. A perspective on flotation: a review. J. Chem. Technol. Biotechnol. 93, 615-623

Quaghebeur, M., Laenen, B., Geysen, D., Nielsen, P., Pontikes, Y., van Gerven, T., Spooren, J., 2013. Characterization of landfilled materials: screening of the enhanced landfill mining potential. J. Clean. Prod. 55, 72-83

Rabelo Monich, P., Rincón Romero, A., Höllen, D., Bernardo, E., 2018. Porous glass-ceramics from alkali activation and sinter-crystallization of mixtures of waste glass and residues from plasma processing of municipal solid waste. J. Clean. Prod. 188, 871-878

Republic of Austria, 2002. Bundesgesetz über eine nachhaltige Abfallwirtschaft (Abfallwirtschaftsgesetz 2002 – AWG 2002). BGBl. I Nr. 102/2002

Savage, G.M., Golueke, C.G., von Stein, E.L., 1993. Landfill mining: past and present. Biocycle 34, 58-61

Scalenghe, R. & Marsan, F., 2009. The anthropogenic sealing of soils in urban areas. Landscape Urban Plan. 90(1-2), 1-10

Scheffer, F. & Schachtschabel, P., 2018. Lehrbuch der Bodenkunde (17th Edition). Springer Spektrum

Spooren, J., van den Bergh, K., Nielsen, P., Quaghebeur, M., 2013. Landfilled fine grained mixed industrial waste: Metal recovery. Acta Metall. Slovaca 19(3), 160-169

Taylor, S., 1964. Abundance of chemical elements in the continental crust: a new table. Geochim. Cosmochim. Acta 28(8), 1,273-1,285

Vollprecht, D., Berger, M., Altenburger-Junker, I., Neuhold, S., Sedlazeck, K. P., Aldrian, A., Dijkstra, J.J., van Zomeren, A., Raith, J., 2019. Mineralogy and Leachability of Natural Rocks–A Comparison to Electric Arc Furnace Slags. Minerals 9, 501

Wanka, S., Münnich, K., Fricke, K., 2017. Landfill Mining - Wet mechanical treatment of fine MSW with a wet jigger. Waste Manage. 59, 316-323