an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU


  • Valentina Grossule - University of Padova, DICEA, Italy
  • Luca Morello - University of Padova, DICEA, Italy
  • Raffaello Cossu - University of Padova, DICEA, Italy
  • Maria Cristina Lavagnolo - University of Padova, DICEA, Italy

DOI 10.31025/2611-4135/2018.13703

Released under CC BY-NC-ND

Copyright: © 2018 CISA Publisher

Editorial History

  • Received: 11 Jun 2018
  • Revised: 08 Aug 2018
  • Accepted: 05 Sep 2018
  • Available online: 17 Sep 2018


The need for more sustainable landfilling has increased interest in bioreactor landfills as a suitable tool for optimising degradation processes. Bioreactors can be categorised as follows: anaerobic, aerobic, semi aerobic and hybrid. The choice of a specific bioreactor can be strongly influenced by the desired treatment objectives (i.e., energy recovery, increased rate of waste stabilisation, washing) as well as by the specific site conditions (e.g., waste characteristics, climate and social/economic situation, regulations). However, the increased rate of waste stabilisation should be the primary driving principle in the bioreactor landfill design (Cossu, 2010). Full-scale bioreactor landfills are still uncommon and one of the reasons is the perception that the effectiveness of this technology is not well demonstrated. This paper aims to contribute to filling this knowledge gap by analysing and comparing the lab scale applications of different types of bioreactors available in the literature and providing a survey of the different methods by considering their respective advantages and disadvantages. Qualitative analysis of the main types of bioreactor landfills is provided according to a few selected characteristics (i.e. energy recovery, biochemical kinetics, technological complexity, costs). Considering landfill sustainability, the discussion is primarily focused on the quantification of the stabilisation capability of the different bioreactors which is calculated in terms of COD and ammonia removal kinetics. The results demonstrate that the optimisation of COD removal kinetics is the highest in aerated bioreactors, while ammonia removal kinetics is maximum in hybrid bioreactors (i.e., 6 and 10 times higher, respectively, compared to the anaerobic bioreactors).



Ahmadifar, M., Sartaj, M., Abdallah, M., 2016. Investigating the performance of aerobic, semi-aerobic, and anaerobic bioreactor landfills for MSW management in developing countries. J. Mater. Cycles Waste Manag. 18, 703–714.
DOI 10.1007/s10163-015-0372-0

Anex, R.P. (1996) Optimal Waste Decomposition- Landfill as Treatment Process. Journal of Environmental Engineering, ASCE, 122(11) 964–974.

Barlaz, M.A., Rooker, A.P., Kjeldsen, P., Gabr, M.A., Borden, R.C., 2002. Critical Evaluation of Factors Required To Terminate the Postclosure Monitoring Period at Solid Waste Landfills. Environ. Sci. Technol. 36, 3457-3464.

Berge, N.D., Reinhart, D.R., Batarseh, E.S., 2009. An assessment of bioreactor landfill costs and benefits. Waste Manag. 29, 1558–1567.
DOI 10.1016/j.wasman.2008.12.010

Berge, N.D., Reinhart, D.R., Dietz, J., Townsend, T., 2006. In situ ammonia removal in bioreactor landfill leachate. Waste Manag. 26, 334–343.
DOI 10.1016/j.wasman.2005.11.003

Berge, N.D., Reinhart, D.R., Townsend, T.G., 2005. The Fate of Nitrogen in Bioreactor Landfills. Crit. Rev. Environ. Sci. Technol. 35, 365–399.
DOI 10.1080/10643380590945003

Bolyard, S.C., Reinhart, D.R., 2015. Application of landfill treatment approaches for stabilization of municipal solid waste. Waste Manag.
DOI 10.1016/j.wasman.2016.01.024

Borglin, S.E., Hazen, T.C., Oldenburg, C.M., Zawislanski, P.T., 2004. Comparison of aerobic and anaerobic biotreatment of municipal solid waste. J. Air Waste Manag. Assoc.
DOI 10.1080/10473289.2004.10470951

Christensen, T.H., Manfredi, S., Knox, K, 2011. Landfilling: Reactor Landfills. In: Christensen, T.H. (Ed.), Solid Waste Technology and Management, vol. 2. Blackwell Publishing Ltd.

Cossu, R., 2012. The environmentally sustainable geological repository: The modern role of landfilling. Waste Manag. 32, 243–244.
DOI 10.1016/j.wasman.2011.11.005

Cossu, R., 2010. Technical evolution of landfilling. Waste Manag. 30, 947–948.
DOI 10.1016/j.wasman.2010.03.003

Cossu, R., Morello, L., Raga, R., Cerminara, G., 2016. Biogas production enhancement using semi-aerobic pre-aeration in a hybrid bioreactor landfill. Waste Manag. 55, 83–92.
DOI 10.1016/j.wasman.2015.10.025

Cossu, R., Raga, R., Rossetti, D., 2003. The PAF model: An integrated approach for landfill sustainability. Waste Manag. 23, 37–44.
DOI 10.1016/S0956-053X(02)00147-2

De Abreu, R., La Motta, E., McManis, K., 2005. Facultative landfill bioreactors (FLB): results of a pilot-scale study. Waste Containment Remediat., 1–13.

EPA, 2018a. Bioreactors. (Accessed on 5th March 2018)

EPA, 2018b. Global Mitigation of Non-CO2 Greenhouse Gases: Landfills. (accessed on 5th August 2018)

Erses, A.S., Onay, T.T., Yenigun, O., 2008. Comparison of aerobic and anaerobic degradation of municipal solid waste in bioreactor landfills. Bioresour. Technol. 99, 5418–5426.
DOI 10.1016/j.biortech.2007.11.008

EU, Proposal of a Directive of the European Parliament and of the Council, 2015.

Fellner, J., Döberl, G., Allgaier, G., Brunner, P.H., 2009. Comparing field investigations with laboratory models to predict landfill leachate emissions. Waste Manag. 29, 1844–1851.
DOI 10.1016/j.wasman.2008.12.022

Filipkowska, U., 2008. Effect of recirculation method on quality of landfill leachate and effectiveness of biogas production. Polish J. Environ. Stud. 17, 199–207.

Giannis, A., Makripodis, G., Simantiraki, F., Somara, M., Gidarakos, E., 2008. Monitoring operational and leachate characteristics of an aerobic simulated landfill bioreactor. Waste Manag. 28, 1346–1354.
DOI 10.1016/j.wasman.2007.06.024

Hanashima, M., Yamasaki, K., Kuroki, T., Onishi, K., 1981. Heat and gas flow analysis in semiaerobic landfill. J. Environ. Eng. Divis., Proc. Am. Soc. Civ. Eng. 107 (EE1), 1–9.

Hater, G.R., Young, K.E., Simpson, C., Harris, J.M., 2001. Economics of Eight Scenarios for Landfill Bioreactors as Compared to a Base Case Subtitle D Landfill. Waste Tech 2001, San Diego, CA, February.

Heimovaara, T.J., Cossu, R., van der Sloot, H.A., 2014. State of the art and perspectives for sustainable landfills. In: Cossu, R., van der Sloot, H.A. (Eds.), Sustainable Landfilling. CISA Publisher, ISBN 978-88-6265-005-2.

He, P., Yang, N., Gu, H., Zhang, H., Shao, L., 2011. N2O and NH3 emissions from a bioreactor landfill operated under limited aerobic degradation conditions. J. Environ. Sci. 23, 1011–1019.
DOI 10.1016/S1001-0742(10)60574-8

He, R., Liu, X. wen, Zhang, Z. jian, Shen, D. sheng, 2007. Characteristics of the bioreactor landfill system using an anaerobic-aerobic process for nitrogen removal. Bioresour. Technol. 98, 2526–2532.
DOI 10.1016/j.biortech.2006.09.013

He, Y., Guo, L., Gao, J., 2012. The Advantages and Mechanism of Semi-aerobic Landfill. Energy Procedia 17, 391–396.
DOI 10.1016/j.egypro.2012.02.111

Hirata, O., Matsufuji, Y., Tachifuji, A., Yanase, R., 2012. Waste stabilization mechanism by a recirculatory semi-aerobic landfill with the aeration system. J. Mater. Cycles Waste Manag. 14, 47–51.
DOI 10.1007/s10163-011-0036-7

Hrad, M., Gamperling, O., Huber-Humer, M., 2013. Comparison between lab- and full-scale applications of in situ aeration of an old landfill and assessment of long-term emission development after completion. Waste Manag. 33, 2061–2073.
DOI 10.1016/j.wasman.2013.01.027

HUANG, Q., YANG, Y., PANG, X., WANG, Q., 2008. Evolution on qualities of leachate and landfill gas in the semi-aerobic landfill. J. Environ. Sci. 20, 499–504.
DOI 10.1016/S1001-0742(08)62086-0

Huo, S.L., Xi, B.D., Yu, H.C., Fan, S.L., Jing, S., Liu, H.L., 2008. A laboratory simulation of in situ leachate treatment in semi-aerobic bioreactor landfill. Water SA 34, 133–140.

Hupe, K., Heyer, K. and Stegmann, R., 2003: Water infiltration for enhanced in situ stabilization. In: Proceedings Sardinia 2003, Ninth International Waste Management and Landfill Symposium, 6–10 October, Sardinia, Italy. Proceedings. CD-ROM, CISA – Envir

IPPC, 2006. IPPC Guidelines for National Greenhouse Gas Inventories. Volume 5: Waste. Chapter 3: Solid Waste Disposal. (accessed 5 August 2018)

Jacobs, J., Scharff, H., Van Arkel, F., De Gier, C.W., 2003. Odour reduction by aeration of landfills: experience, operation and costs. In: Conference Proceedings, 9th International Waste Management and Landfill Symposium, Cagliari, Italy.

Jeong, S., Nam, A., Yi, S.M., Kim, J.Y., 2015. Field assessment of semi-aerobic condition and the methane correction factor for the semi-aerobic landfills provided by IPCC guidelines. Waste Manag. 36, 197–203.
DOI 10.1016/j.wasman.2014.10.020

JICA, 2004. Detailed design for development of semi-aerobic system pilot project at Sisdole landfill site (vol. I), Lalitpur, Nepal: East Consult. (P.) Ltd.

Jokela, J.P.Y., Kettunen, R.H., Sormunen, K.M., Rintala, J.A., 2002. Biological nitrogen removal from municipal landfill leachate: Low-cost nitrification in biofilters and laboratory scale in-situ denitrification. Water Res. 36, 4079–4087.
DOI 10.1016/S0043-1354(02)00129-X

Karnik, M. & C. Perry (1997) Cost Implications of Operating Landfills as Flushing Bioreactors. Proceedings from Sardinia 97, Sixth International Landfill Symposium, Volume I, S. Margherita di Pula, Cagliari, Italy, 13–17 October, 1997, Volume I, 419–426.

Khalil, K., Mary, B., Renault, P., 2004. Nitrous oxide production by nitrification and denitrification in soil aggregates as affected by O2concentration. Soil Biol. Biochem. 36, 687–699. doi:10.1016/j.soilbio.2004.01.004Kim H., 2005. Comparative studies o

Kim, H., Jang, Y.C., Townsend, T., 2011. The behavior and long-term fate of metals in simulated landfill bioreactors under aerobic and anaerobic conditions. J. Hazard. Mater. 194, 369–377.
DOI 10.1016/j.jhazmat.2011.07.119

Kylefors, K., Andreas, L., Lagerkvist, A., 2003. A comparsion of small-scale, pilot scale and large -scale tests for predicting leaching behavioud of landfilled wastes. Waste Manag. 23, 45–59.

Laner, D., Crest, M., Scharff, H., Morris, J.W.F., Barlaz, M.A., 2012. A review of approaches for the long-term management of municipal solid waste landfills. Waste Manag. 32, 498–512.
DOI 10.1016/j.wasman.2011.11.010

Lavagnolo MC, Grossule V, Raga R. Innovative dual-step management of semi-aerobic landfill in a tropical climate. Waste Manag [Internet]. 2018;1–10.
DOI 10.1016/j.wasman.2018.01.017

Long, Y., Hu, L. fang, Shen, D.S., 2009a. Nitrogen transformation in the hybrid bioreactor landfill. Bioresour. Technol. 100, 2527–2533.
DOI 10.1016/j.biortech.2008.11.036

Long, Y., Long, Y.Y., Liu, H.C., Shen, D.S., 2009b. Degradation of refuse in hybrid bioreactor landfill. Biomed. Environ. Sci. 22, 303–310. doi:10.1016/S0895-3988(09)60060-X

Mali Sandip, T., Khare Kanchan, C., Biradar Ashok, H., 2012. Enhancement of methane production and bio-stabilisation of municipal solid waste in anaerobic bioreactor landfill. Bioresour. Technol. 110, 10–17.
DOI 10.1016/j.biortech.2011.12.027

Matsufuji, Y., Kobayashi, H., Tanaka, A., Ando, S., Kawabata, T., Hanashima, M., 1996. Generation of greenhouse effect gases by different landfill types and methane gas control. In: Proceedings of 7th ISWA International Congress and Exhibition, Yokohama,

Mertoglu, B., Calli, B., Inanc, B., Ozturk, I., 2006. Evaluation of in situ ammonia removal in an aerated landfill bioreactor. Process Biochem. 41, 2359–2366.
DOI 10.1016/j.procbio.2006.06.014

Ministry of the Environment (Japan), 2018. (Accessed on 6th June 2018)

Morello, L., Raga, R., Lavagnolo, M.C., Pivato, A., Ali, M., Yue, D., Cossu, R., 2017. The S.An.A.® concept: Semi-aerobic, Anaerobic, Aerated bioreactor landfill. Waste Manag.
DOI 10.1016/j.wasman.2017.05.006

Mummey, D.L., Smith, J.L., Bolton, H., 1994. Nitrous oxide flux from a shrub-steppe ecosystem: Sources and regulation. Soil Biol. Biochem. 26, 279–286.
DOI 10.1016/0038-0717(94)90168-6

Nikolaou, A., Giannis, A., Gidarakos, E., 2009. Comparison of aerobic and anaerobic degradation of municipal solid wastes in lab scale bioreactors. Proceedings of the 11th International Conference on Environmental Science and Technology. Chaina, Crete, Gr

Omar, H., Rohani, S., 2015. Treatment of landfill waste, leachate and landfill gas: A review. Front. Chem. Sci. Eng.
DOI 10.1007/s11705-015-1501-y

Price, G.A., Barlaz, M.A., Hater, G.R., 2003. Nitrogen management in bioreactor landfills. Waste Manag. 23, 675–688.
DOI 10.1016/S0956-053X(03)00104-1

Powell, J., Jain, P., Kim, H., Townsend, T., Reinhart, D., 2006. Changes in landfill gas quality as a result of controlled air injection. Environ. Sci. Technol. 40, 1029–1034.
DOI 10.1021/es051114j

Price, G.A., Barlaz, M.A., Hater, G.R., 2003. Nitrogen management in bioreactor landfills. Waste Manag. 23, 675–688.
DOI 10.1016/S0956-053X(03)00104-1

Purcell, B.E., Sollars, C.J., Butler, A.P., 1997. Enhanced moisture movement in simulated landfill environments. In: Proceedings Sardinia 97, Sixth International Landfill Symposium, Vol. I, CISA, Cagliari, pp. 409–418.

Raga, R., Cossu, R., 2014. Landfill aeration in the framework of a reclamation project in Northern Italy. Waste Manag. 34, 683–691.
DOI 10.1016/j.wasman.2013.12.011

Read, A.D., Hudgins, M., Phillips, P., 2001. Aerobic landfill test cells and their implications for sustainable waste disposal. Geogr. J. 167, 235–247.
DOI 10.1111/1475-4959.00021

Reinhart, D.R., Mccreanor, P.T., Townsend, T., 2002. Waste Management & Research The bioreactor landfill : Its status and future. Waste Manag. Res. 172–186.
DOI 10.1177/0734242X0202000209

Rich, C., Gronow, J., Voulvoulis, N., 2008. The potential for aeration of MSW landfills to accelerate completion. Waste Manag. 28, 1039–1048.
DOI 10.1016/j.wasman.2007.03.022

Ritzkowski, M., 2011. How Does Landfill Aeration Impact on Leachate Composition ? Proceedings Sardinia 2011, Thirteenth International Waste Management and Landfill Symposium S. Margherita di Pula, Cagliari, Italy; 3 - 7 October 2011

Ritzkowski, M., Heyer, K.U., Stegmann, R., 2006. Fundamental processes and implications during in situ aeration of old landfills. Waste Manag. 26, 356–372.
DOI 10.1016/j.wasman.2005.11.009

Ritzkowski, M., Stegmann, R., 2013. Landfill aeration within the scope of post-closure care and its completion. Waste Manag. 33, 2074–2082.
DOI 10.1016/j.wasman.2013.02.004

Ritzkowski, M., Stegmann, R., 2012. Landfill aeration worldwide: Concepts, indications and findings. Waste Manag. 32, 1411–1419.

Ritzkowski, M., Stegmann, R., 2007. Controlling greenhouse gas emissions through landfill in situ aeration. Int. J. Greenh. Gas Control 1, 281–288. doi:10.1016/S1750-5836(07)00029-1
DOI 10.1016/j.wasman.2012.02.020

Ritzkowski, M., Stegmann, R., 2005. Mechanisms Affecting the Leachate Quality in the Course of Landfill in Situ Aeration. Proceedings Sardinia 2005, Tenth International Waste Management and Landfill Symposium. S. Margherita di Pula, Cagliari, Italy; 3 - 7

Ritzkowski, M., Stegmann, R., 2003. Emission behaviour of aerated landfills : results of laboratory scale investigations. Proceedings Sardinia 2003, Ninth International Waste Management and Landfill Symposium. S. Margherita di Pula, Cagliari, Italy; 6 - 1

Šan, I., Onay, T.T., 2001. Impact of various leachate recirculation regimes on municipal solid waste degradation. J. Hazard. Mater. 87, 259–271.
DOI 10.1016/S0304-3894(01)00290-4

Sanphoti, N., Towprayoon, S., Chaiprasert, P., Nopharatana, A., 2006. The effects of leachate recirculation with supplemental water addition on methane production and waste decomposition in a simulated tropical landfill. J. Environ. Manage. 81, 27–35.
DOI 10.1016/j.jenvman.2005.10.015

Shao, L.M., He, P.J., Li, G.J., 2008. In situ nitrogen removal from leachate by bioreactor landfill with limited aeration. Waste Manag. 28, 1000–1007.
DOI 10.1016/j.wasman.2007.02.028

Shimaoka T., Matsufuji Y., Hanashima M., 2000. Characteristic and Mechanism of Semi-Aerobic Landfill on Stabilization of Solid Waste. Intercontinental Landfill Research Symposium, 2000.

Shou-liang, H., Bei-dou, X., Hai-chan, Y., Shi-lei, F., Jing, S., Hong-liang, L., 2008. In situ simultaneous organics and nitrogen removal from recycled landfill leachate using an anaerobic-aerobic process. Bioresour. Technol. 99, 6456–6463.
DOI 10.1016/j.biortech.2007.11.047

Sinan Bilgili, M., Demir, A., Ince, M., Özkaya, B., 2007. Metal concentrations of simulated aerobic and anaerobic pilot scale landfill reactors. J. Hazard. Mater. 145, 186–194.
DOI 0.1016/j.jhazmat.2006.11.014

Slezak, R., Krzystek, L., Ledakowicz, S., 2015. Degradation of municipal solid waste in simulated landfill bioreactors under aerobic conditions. Waste Manag. 43.
DOI 10.1016/j.wasman.2015.06.017

Slezak, R., Krzystek, L., Ledakowicz, S., 2010. Simulation of aerobic landfill in laboratory scale lysimeters - effect of aeration rate. Chem. Pap. 64, 223–229.
DOI 10.2478/s11696-009-0113-8

Stegmann, R., Heyer, K.U., Hupe, K., Ritzkowski, M., 2003. Discussion of criteria for the completion of landfill aftercare. Paper presented at the Sardinia International Waste Management and Landfill Symposium, Sardinia, Italy.

Stessel, R.I., Murphy, R.J., 1992. A lysimeter study of the aerobic landfill concept. Waste Manag. Res. 10, 485–503.
DOI 10.1016/0734-242X(92)90089-4

Sun, F., Sun, B., Li, Q., Deng, X., Hu, J., Wu, W., 2014. Pilot-scale nitrogen removal from leachate by ex situ nitrification and in situ denitrification in a landfill bioreactor. Chemosphere 101.
DOI 10.1016/j.chemosphere.2013.12.030

Sun, X., Zhang, H., Cheng, Z., 2017. Use of bioreactor landfill for nitrogen removal to enhance methane production through ex situ simultaneous nitrification-denitrification and in situ denitrification. Waste Manag. 66, 97–102.
DOI 10.1016/j.wasman.2017.04.020

Sun, Y., Wang, Y.N., Sun, X., Wu, H., Zhang, H., 2013. Production characteristics of N2O during stabilization of municipal solid waste in an intermittent aerated semi-aerobic bioreactor landfill. Waste Manag. 33, 2729–2736.
DOI 10.1016/j.wasman.2013.08.013

Sutthasil, N., Chiemchaisri, C., Chiemchaisri, W., Wangyao, K., Tawprayoon, S., Endo, K., Yamada, M., 2014. Comparison of Solid Waste Stabilization and Methane Emission from Aerobic and Semi-aerobic Landfills Operated in Tropical Conditions. Environ. Eng.

Theng, L.C., Matsufuji, Y., Mohd, N.H., 2005. Implementation of the semi-aerobic landfill system (Fukuoka method) in developing countries: A Malaysia cost analysis. Waste Manag. 25, 702–711.
DOI 10.1016/j.wasman.2005.01.008

Tsujimoto, Y., Masuda, J., Fukuyama, J., Ito, H., 1994. N2o Emissions at Solid-Waste Disposal Sites in Osaka City. J. Air Waste Manage. Assoc. 44, 1313–1314.
DOI 10.1080/10473289.1994.10467327

US6398958 B1 2002. Gary R. Hater, Roger B. Green, Jeffrey M. Harris. Patent Facultative Landfill Bioreactor, Waste Management. Inc

Valencia, R., van der Zon, W., Woelders, H., Lubberding, H.J., Gijzen, H.J., 2009. Achieving “Final Storage Quality” of municipal solid waste in pilot scale bioreactor landfills. Waste Manag. 29, 78–85.
DOI 10.1016/j.wasman.2008.02.008

Valencia, R., Zon, W. van der, Woelders, H., Lubberding, H.J., Gijzen, H.J., 2011. Anammox: An option for ammonium removal in bioreactor landfills. Waste Manag. 31, 2287–2293.
DOI 0.1016/j.wasman.2011.06.012

Venterea, R.T., Rolston, D.E., 2000. Mechanisms and kinetics of nitric and nitrous oxide production during nitri ® cation in agricultural soil. Glob. Chang. Biol. 6, 303–316.

Vigneron, V., Ponthieu, M., Barina, G., Audic, J.M., Duquennoi, C., Mazéas, L., Bernet, N., Bouchez, T., 2007. Nitrate and nitrite injection during municipal solid waste anaerobic biodegradation. Waste Manag. 27, 778–791.
DOI 10.1016/j.wasman.2006.02.020

Walker, A.N., Beaven, R.P., Powrie, W., 1997. Overcoming problems in the development of a high rate flushing bioreactor landfill. In: Proceedings Sardinia 97, Sixth International Landfill Symposium, Vol. I, CISA, Cagliari, pp. 397–408.

Warith, M., 2002. Bioreactor landfills: Experimental and field results. Waste Manag. 22, 7–17.
DOI 10.1016/S0956-053X(01)00014-9

Watzinger, a, Reichenauer, T.G., Blum, W.E.H., Gerzabek, M.H., Zechmeister-Boltenstern, S., 2005. The Effect of Landfill Leachate Irrigation on Soil Gas Composition: Methane Oxidation and Nitrous Oxide Formation. Water, Air, Soil Pollut. 164, 295–313.

Wu, C., Shimaoka, T., Nakayama, H., Komiya, T., Chai, X., Hao, Y., 2014. Influence of aeration modes on leachate characteristic of landfills that adopt the aerobic-anaerobic landfill method. Waste Manag. 34, 101–111.
DOI 10.1016/j.wasman.2013.10.015

Xu, Q., Jin, X., Ma, Z., Tao, H., Ko, J.H., 2014. Methane production in simulated hybrid bioreactor landfill. Bioresour. Technol. 168, 92–96. doi:
DOI 10.1016/j.biortech.2014.03.036

Xu, Q., Tian, Y., Wang, S., Ko, J.H., 2015. A comparative study of leachate quality and biogas generation in simulated anaerobic and hybrid bioreactors. Waste Manag. 41, 94–100.
DOI 10.1016/j.wasman.2015.03.023

Yang, Y., Yue, B., Yang, Y., Huang, Q., 2012. Influence of semi-aerobic and anaerobic landfill operation with leachate recirculation on stabilization processes. Waste Manag. Res. 30, 255–265.
DOI 10.1177/0734242X11413328

Yuen, S., Styles, J., Wang, Q., McMahon, T., 1999. Findings from a full-scale bioreactor landfill study in Australia. Proceedings Sardinia ’99, 7th International Waste management and Landfill Symposium, Environmentla Sanitary Engineering Center (CISA), Ca

Zeng, X.L., Ding, W.C., Long, T.R., Zhang, L.L., Lin, C.B., 2006. Influence of landfill structures on stabilization of fully recycled leachate. J. Cent. South Univ. Technol. (English Ed. 13, 321–324.
DOI 10.1007/s11771-006-0133-2

Zhong, Q., Li, D., Tao, Y., Wang, X., He, X., Zhang, J., Zhang, J., Guo, W., Wang, L., 2009. Nitrogen removal from landfill leachate via ex situ nitrification and sequential in situ denitrification. Waste Manag. 29, 1347–1353.
DOI 10.1016/j.wasman.2008.10.014