an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU

ANTIMONY AND VANADIUM IN INCINERATION BOTTOM ASH – LEACHING BEHAVIOR AND CONCLUSIONS FOR TREATMENT PROCESSES

  • Franz-Georg Simon - Division 4.3 Contaminant Transfer and Environmental Technologies, Bundesanstalt für Materialforschung und -prüfung, Germany
  • Christian Vogel - Division 4.3 Contaminant Transfer and Environmental Technologies, Bundesanstalt für Materialforschung und -prüfung, Germany
  • Ute Kalbe - Division 4.3 Contaminant Transfer and Environmental Technologies, Bundesanstalt für Materialforschung und -prüfung, Germany

Share


Released under CC BY-NC-ND

Copyright: © 2021 CISA Publisher


Abstract

Due to its large mineral fraction, incineration bottom ash (IBA) from municipal solid waste incineration is an interesting raw material that can be used for road construction or to produce secondary building materials. However, leaching chloride, sulfate, and potentially harmful heavy metals may cause problems in using IBA in civil engineering. Investigating leaching behavior is crucial for the assessment of the environmental compatibility of IBA applications. Various test procedures are available for that purpose. In the present study, a long-term leaching test of a wet-mechanically treated IBA was performed in a lysimeter for almost six years. While concentrations of chloride, sulfate and the majority of the heavy metals started to decrease rapidly with advancing liquid-to-solid ratio (L/S), antimony (Sb) and vanadium (V) behaved differently. At the beginning of the lysimeter test, the Sb and V concentrations were low, but after approximately one year of operation at an L/S ratio of around 0.8 L/kg, a steady increase was observed. It was shown that this increase is the result of low Ca concentrations due to the formation of CaCO3. With the data, the solubility products from Ca-antimonate and Ca-vanadate were calculated. The unusual leaching behavior of Sb and V should be kept in mind when considering field scenarios and evaluating the impact on the environment.

Keywords


Editorial History

  • Received: 18 Feb 2021
  • Revised: 01 Jun 2021
  • Accepted: 16 Jun 2021
  • Available online: 11 Sep 2021

References

Bagherifam, S., Brown, T. C., Wijayawardena, A., & Naidu, R. (2021). The influence of different antimony (Sb) compounds and ageing on bioavailability and fractionation of antimony in two dissimilar soils. Environmental Pollution, 270, 116270.

Bayuseno, A. P., & Schmahl, W. W. (2010). Understanding the chemical and mineralogical properties of the inorganic portion of MSWI bottom ash. Waste Manage., 30(8–9), 1509-1520.
DOI 10.1016/j.wasman.2010.03.010

BDE, BDSV, bvse, ITAD, PlasticsEurope, VDM, VDMA, VCI, & VKU. (2018). Statusbericht der deutschen Kreislaufwirtschaft, Einblicke und Aussichten (Status report of ther German circular economy, insights and prospects)

Blasenbauer, D., Huber, F., Lederer, J., Quina, M. J., Blanc-Biscarat, D., Bogush, A., Bontempi, E., Blondeau, J., Chimenos, J. M., Dahlbo, H., Fagerqvist, J., Giro-Paloma, J., Hjelmar, O., Hyks, J., Keaney, J., Lupsea-Toader, M., O’Caollai, C. J., Orupõld, K., Pająk, T., Simon, F.-G., Svecova, L., Šyc, M., Ulvang, R., Vaajasaari, K., van Caneghem, J., van Zomeren, A., Vasarevičius, S., Wégner, K., & Fellner, J. (2020). Legal situation and current practice of waste incineration bottom ash utilisation in Europe. Waste Manage., 102, 868-883.
DOI 10.1016/j.wasman.2019.11.031

Bundesrat. (2020). Verordnung zur Einführung einer Ersatzbaustoffverordnung (Ordinanance on secondary building materials). Decision of the Federal Council 587/20

Bunge, R. (2018). Recovery of Metals from Waste Incineration Bottom Ash. In: O. Holm & E. Thome-Kozmiensky (eds.), Removal, Treatment and Utilisation of Waste Incineration Bottom Ash (pp. 63-143). Neuruppin: TK Verlag

Bürgin, M., Schmidt, V., & Simon, F. G. (1995). Method for recovering valuable materials from refuse incineration slag. Patent application EP 0 691 160 A1, Den Haag: European Patent Office

Chandler, A. J., Eighmy, T. T., Hartlen, J., Hjelmar, O., Kosson, D. S., Sawell, S. E., van der Sloot, H. A., & Vehlow, J. (eds.). (1997). Municipal solid waste incineration residues: An international perspective on characterisation and management of residues from municipal solid waste incineration (Vol. 67). Amsterdam: Elsevier

Cornelis, G., Van Gerven, T., & Vandecasteele, C. (2006). Antimony leaching from uncarbonated and carbonated MSWI bottom ash. J. Haz. Mat., 137(3), 1284-1292.

Cornelis, G., Van Gerven, T., & Vandecasteele, C. (2012). Antimony leaching from MSWI bottom ash: Modelling of the effect of pH and carbonation. Waste Manage., 32(2), 278-286.

Di Gianfilippo, M., Hyks, J., Verginelli, I., Costa, G., Hjelmar, O., & Lombardi, F. (2018). Leaching behaviour of incineration bottom ash in a reuse scenario: 12years-field data vs. lab test results. Waste Manage., 73, 367-380.

Dijkstra, J. J., van der Sloot, H. A., & Comans, R. N. J. (2006). The leaching of major and trace elements from MSWI bottom ash as a function of pH and time. Appl. Geochem., 21, 335-351.
DOI 10.1016/j.apgeochem.2005.11.003

DIN 19528: 2009-01. Elution von Feststoffen - Perkolationsverfahren zur gemeinsamen Untersuchung des Elutionsverhaltens von organischen und anorganischen Stoffen für Materialien mit einer Korngröße bis 32 mm - Grundlegende Charakterisierung mit einem ausführlichen Säulenversuch und Übereinstimmungsuntersuchung mit einem Säulenschnelltest (Leaching of solid materials - Percolation method for the joint examination of the leaching behaviour of organic and inorganic substances for materials with a particle size upto 32 mm - Basic characterization using a comprehensive column test and compliance test using a quick column test). Berlin: German Institute for Standardization

DIN EN ISO 5667-3: 2013-03. Wasserbeschaffenheit - Probenahme - Teil 3: Anleitung zur Konservierung und Handhabung von Wasserproben. (Water quality - Sampling - Part 3: Guidance on the preservation and handling of water samples). Berlin: German Institute for Standardization

DIN EN ISO 7027. (2016-11). Wasserbeschaffenheit - Bestimmung der Trübung. In: Water quality - Determination of turbidity (ISO 7027:1999). Berlin: German Institute for Standardization

DIN EN ISO 10304-1: 2009-07. Wasserbeschaffenheit - Bestimmung von gelösten Anionen mittels Flüssigkeits-Ionenchromatographie - Teil 1: Bestimmung von Bromid, Chlorid, Fluorid, Nitrat, Nitrit, Phosphat und Sulfat. (Water quality - Determination of dissolved anions by liquid chromatography of ions - Part 1: Determination of bromide, chloride, fluoride, nitrate, nitrite, phosphate and sulfate). Berlin: German Institute for Standardization

DIN EN ISO 11885. (2009-09). Wasserbeschaffenheit - Bestimmung von ausgewählten Elementen durch induktiv gekoppelte Plasma-Atom-Emissionsspektrometrie (ICP-OES). In: Water quality - Determination of selected elements by inductively coupled plasma optical emission spectroscopy (ICP-OES). Berlin: German Institute for Standardization

DIN EN ISO 17294-2: 2017-01. Wasserbeschaffenheit - Anwendung der induktiv gekoppelten Plasma-Massenspektrometrie (ICP-MS) - Teil 2: Bestimmung von ausgewählten Elementen einschließlich Uran-Isotope (Water quality - Application of inductively coupled plasma mass spectrometry (ICP-MS) - Part 2: Determination of selected elements including uranium isotopes). Berlin: German Institute for Standardization

DIN ISO 10390: 2005-12. Bodenbeschaffenheit - Bestimmung des pH-Wertes. (Soil quality - Determination of pH (ISO 10390:2005)). Berlin: German Institute for Standardization

DIN ISO 11265. (1997-06). Bodenbeschaffenheit - Bestimmung der spezifischen elektrischen Leitfähigkeit In: Soil quality - Determination of the specific electrical conductivity Berlin: German Institute for Standardization

Diquattro, S., Castaldi, P., Ritch, S., Juhasz, A. L., Brunetti, G., Scheckel, K. G., Garau, G., & Lombi, E. (2021). Insights into the fate of antimony (Sb) in contaminated soils: ageing influence on Sb mobility, bioavailability, bioaccessibility and speciation. Science of The Total Environment, 145354.

EN 12457-2: 2002-09. Characterization of waste - Leaching; Compliance test for leaching of granular and sludges - Part 2: One stage batch test at a liquid to solid ratio of 10 l/kg with particle size below 4 mm (without or with size reduction). Brussels: CEN European Committee for Standardisation

Gleis, M., & Simon, F. G. (2016). Novellierung des BVT-Merkblattes Abfallverbrennung – Sachstand, Entwicklungstendenzen und neue Verfahren zur Aufbereitung von Rostaschen und Filterstäuben. In: K. J. Thomé-Kozmiensky (ed.), Mineralische Nebenprodukte und Abfälle 3 - Aschen, Schlacken, Stäube und Baurestmassen (Vol. 3, pp. 163-172). Neuruppin: TK Verlag Karl Thomé-Kozmiensky

Grathwohl, P., & Susset, B. (2009). Comparison of percolation to batch and sequential leaching tests: Theory and data. Waste Manage., 29(10), 2681-2688.
DOI 10.1016/j.wasman.2009.05.016

Hjelmar, O., van der Sloot, H. A., & van Zomeren, A. (2013). Hazard property classification of high temperature waste materials. Paper presented at the Fourteenth International Waste Management and Landfill Symposium, Sardinia_2013, S. Margherita di Pula, Italy

Holm, O., & Simon, F. G. (2017). Innovative treatment trains of bottom ash (BA) from municipal solid waste incineration (MSWI) in Germany. Waste Manage., 59, 229-236.
DOI 10.1016/j.wasman.2016.09.004

Holm, O., Wollik, E., & Bley, T. J. (2018). Recovery of copper from small grain size fractions of municipal solid waste incineration bottom ash by means of density separation. Int. J. Sust. Eng., 11(4), 250-260.
DOI 10.1080/19397038.2017.1355415

Hyks, J., & Hjelmar, O. (2018). Utilisation of Incineration Bottom Ash (IBA) from Waste Incineration - Prospects and Limits. In: O. Holm & E. Thome-Kozmiensky (eds.), Removal, Treatment and Utilisation of Waste Incineration Bottom Ash (pp. 11-24). Neuruppin: TK Verlag

Hyks, J., & Šyc, M. (2019). Utilisation of Incineration Bottom Ash in Road Construction. In: S. Thiel, E. Thomé-Kozmiensky, F. Winter, & D. Juchelkova (eds.), Waste Mangement, Vol. 9, Waste-to-Energy (pp. 731- 741). Nietwerder: TK-Verlag

ITAD. (2019). Jahresbericht 2019 (Annual report 2019) https://www.itad.de/service/downloads/itad-jahresbericht-2019-webformat.pdf, Düsseldorf: ITAD – Interessengemeinschaft der Thermischen Abfallbehandlungsanlagen in Deutschland e.V

Johnson, C. A., Kaeppeli, M., Brandenberger, S., Ulrich, A., & Baumann, W. (1999). Hydrological and geochemical factors affecting leachate composition in municipal solid waste incinerator bottom ash: Part II. The geochemistry of leachate from Landfill Lostorf, Switzerland. J. Contam. Hydrol., 40(3), 239-259.

Kalbe, U., & Simon, F.-G. (2020). Potential Use of Incineration Bottom Ash in Construction: Evaluation of the Environmental Impact. Waste and Biomass Valorization, 11(12), 7055–7065.
DOI 10.1007/s12649-020-01086-2

Krüger, O., Kalbe, U., Berger, W., Simon, F. G., & López Meza, S. (2012). Leaching Experiments on the Release of Heavy Metals and PAH from Soil and Waste Materials. J. Hazard. Mater., 207-208, 51-55.
DOI 10.1016/j.jhazmat.2011.02.016

Kuchta, K., & Enzner, V. (2015). Ressourceneffizienz der Metallrückgewinnung vor und nach der Verbrennung. In: K. J. Thomé-Kozmiensky (ed.), Mineralische Nebenprodukte und Abfälle 2 (pp. 105-116). Neuruppin: TK Verlag

López Meza, S., Kalbe, U., Berger, W., & Simon, F. G. (2010). Effect of contact time on the release of contaminants from granular waste materials during column leaching experiments. Waste Manage., 30(4), 565-571.

Okkenhaug, G., Almås, Å. R., Morin, N., Halea, S. E., & Arp, H. P. H. (2015). The presence and leachability of antimony in different wastes and waste handling facilities in Norway. Environ. Sci. Process Impacts, 17(11), 1880-1891.
DOI 10.1039/C5EM00210A

Sanusi, A., Wortham, H., Millet, M., & Mirabel, P. (1996). Chemical composition of rainwater in Eastern France. Atmos. Environ., 30(1), 59-71.
DOI 10.1016/1352-2310(95)00237-S

Schnabel, K., Brück, F., Pohl, S., Mansfeldt, T., & Weigand, H. (2021). Technically exploitable mineral carbonation potential of four alkaline waste materials and effects on contaminant mobility. Greenhouse Gases: Science and Technology.

Simon, F. G., & Andersson, K. H. (1995). InRec™ process for recovering materials from solid waste incineration residues. ABB Review(9), 15-20

Simon, F. G., Schmidt, V., & Carcer, B. (1995). Alterungsverhalten von MVA-Schlacken. Müll und Abfall, 27(11), 759-764

Šyc, M., Simon, F. G., Biganzoli, L., Grosso, M., & Hyks, J. (2018). Resource Recovery from Incineration Bottom Ash: Basics, Concepts, Principles. In: O. Holm & E. Thome-Kozmiensky (eds.), Removal, Treatment and Utilisation of Waste Incineration Bottom Ash (pp. 1-10). Neuruppin: TK Verlag

Šyc, M., Simon, F. G., Hyks, J., Braga, R., Biganzoli, L., Costa, G., Funari, V., & Grosso, M. (2020). Metal recovery from incineration bottom ash: state-of-the-art and recent developments. J. Haz. Mat., 393(122433), 1-17.
DOI 10.1016/j.jhazmat.2020.122433

Van Caneghem, J., Verbinnen, B., Cornelis, G., de Wijs, J., Mulder, R., Billen, P., & Vandecasteele, C. (2016). Immobilization of antimony in waste-to-energy bottom ash by addition of calcium and iron containing additives. Waste Manage., 54, 162-168.

van der Sloot, H. A., Kosson, D. S., & Hjelmar, O. (2001). Characteristics, treatment and utilization of residues from municipal waste incineration. Waste Manage., 21, 753-765.
DOI 10.1016/S0956-053X(01)00009-5

Verein Deutscher Ingenieure. (2014). VDI 3460, Emission Control, Thermal waste treatment, Fundamentals (Part 1). Berlin: Beuth Verlag


oct
11