Released under CC BY-NC-ND
Copyright: © 2021 CISA Publisher
Bagherifam, S., Brown, T. C., Wijayawardena, A., & Naidu, R. (2021). The influence of different antimony (Sb) compounds and ageing on bioavailability and fractionation of antimony in two dissimilar soils. Environmental Pollution, 270, 116270.
Bayuseno, A. P., & Schmahl, W. W. (2010). Understanding the chemical and mineralogical properties of the inorganic portion of MSWI bottom ash. Waste Manage., 30(8–9), 1509-1520.
DOI 10.1016/j.wasman.2010.03.010
BDE, BDSV, bvse, ITAD, PlasticsEurope, VDM, VDMA, VCI, & VKU. (2018). Statusbericht der deutschen Kreislaufwirtschaft, Einblicke und Aussichten (Status report of ther German circular economy, insights and prospects)
Blasenbauer, D., Huber, F., Lederer, J., Quina, M. J., Blanc-Biscarat, D., Bogush, A., Bontempi, E., Blondeau, J., Chimenos, J. M., Dahlbo, H., Fagerqvist, J., Giro-Paloma, J., Hjelmar, O., Hyks, J., Keaney, J., Lupsea-Toader, M., O’Caollai, C. J., Orupõld, K., Pająk, T., Simon, F.-G., Svecova, L., Šyc, M., Ulvang, R., Vaajasaari, K., van Caneghem, J., van Zomeren, A., Vasarevičius, S., Wégner, K., & Fellner, J. (2020). Legal situation and current practice of waste incineration bottom ash utilisation in Europe. Waste Manage., 102, 868-883.
DOI 10.1016/j.wasman.2019.11.031
Bundesrat. (2020). Verordnung zur Einführung einer Ersatzbaustoffverordnung (Ordinanance on secondary building materials). Decision of the Federal Council 587/20
Bunge, R. (2018). Recovery of Metals from Waste Incineration Bottom Ash. In: O. Holm & E. Thome-Kozmiensky (eds.), Removal, Treatment and Utilisation of Waste Incineration Bottom Ash (pp. 63-143). Neuruppin: TK Verlag
Bürgin, M., Schmidt, V., & Simon, F. G. (1995). Method for recovering valuable materials from refuse incineration slag. Patent application EP 0 691 160 A1, Den Haag: European Patent Office
Chandler, A. J., Eighmy, T. T., Hartlen, J., Hjelmar, O., Kosson, D. S., Sawell, S. E., van der Sloot, H. A., & Vehlow, J. (eds.). (1997). Municipal solid waste incineration residues: An international perspective on characterisation and management of residues from municipal solid waste incineration (Vol. 67). Amsterdam: Elsevier
Cornelis, G., Van Gerven, T., & Vandecasteele, C. (2006). Antimony leaching from uncarbonated and carbonated MSWI bottom ash. J. Haz. Mat., 137(3), 1284-1292.
Cornelis, G., Van Gerven, T., & Vandecasteele, C. (2012). Antimony leaching from MSWI bottom ash: Modelling of the effect of pH and carbonation. Waste Manage., 32(2), 278-286.
Di Gianfilippo, M., Hyks, J., Verginelli, I., Costa, G., Hjelmar, O., & Lombardi, F. (2018). Leaching behaviour of incineration bottom ash in a reuse scenario: 12years-field data vs. lab test results. Waste Manage., 73, 367-380.
Dijkstra, J. J., van der Sloot, H. A., & Comans, R. N. J. (2006). The leaching of major and trace elements from MSWI bottom ash as a function of pH and time. Appl. Geochem., 21, 335-351.
DOI 10.1016/j.apgeochem.2005.11.003
DIN 19528: 2009-01. Elution von Feststoffen - Perkolationsverfahren zur gemeinsamen Untersuchung des Elutionsverhaltens von organischen und anorganischen Stoffen für Materialien mit einer Korngröße bis 32 mm - Grundlegende Charakterisierung mit einem ausführlichen Säulenversuch und Übereinstimmungsuntersuchung mit einem Säulenschnelltest (Leaching of solid materials - Percolation method for the joint examination of the leaching behaviour of organic and inorganic substances for materials with a particle size upto 32 mm - Basic characterization using a comprehensive column test and compliance test using a quick column test). Berlin: German Institute for Standardization
DIN EN ISO 5667-3: 2013-03. Wasserbeschaffenheit - Probenahme - Teil 3: Anleitung zur Konservierung und Handhabung von Wasserproben. (Water quality - Sampling - Part 3: Guidance on the preservation and handling of water samples). Berlin: German Institute for Standardization
DIN EN ISO 7027. (2016-11). Wasserbeschaffenheit - Bestimmung der Trübung. In: Water quality - Determination of turbidity (ISO 7027:1999). Berlin: German Institute for Standardization
DIN EN ISO 10304-1: 2009-07. Wasserbeschaffenheit - Bestimmung von gelösten Anionen mittels Flüssigkeits-Ionenchromatographie - Teil 1: Bestimmung von Bromid, Chlorid, Fluorid, Nitrat, Nitrit, Phosphat und Sulfat. (Water quality - Determination of dissolved anions by liquid chromatography of ions - Part 1: Determination of bromide, chloride, fluoride, nitrate, nitrite, phosphate and sulfate). Berlin: German Institute for Standardization
DIN EN ISO 11885. (2009-09). Wasserbeschaffenheit - Bestimmung von ausgewählten Elementen durch induktiv gekoppelte Plasma-Atom-Emissionsspektrometrie (ICP-OES). In: Water quality - Determination of selected elements by inductively coupled plasma optical emission spectroscopy (ICP-OES). Berlin: German Institute for Standardization
DIN EN ISO 17294-2: 2017-01. Wasserbeschaffenheit - Anwendung der induktiv gekoppelten Plasma-Massenspektrometrie (ICP-MS) - Teil 2: Bestimmung von ausgewählten Elementen einschließlich Uran-Isotope (Water quality - Application of inductively coupled plasma mass spectrometry (ICP-MS) - Part 2: Determination of selected elements including uranium isotopes). Berlin: German Institute for Standardization
DIN ISO 10390: 2005-12. Bodenbeschaffenheit - Bestimmung des pH-Wertes. (Soil quality - Determination of pH (ISO 10390:2005)). Berlin: German Institute for Standardization
DIN ISO 11265. (1997-06). Bodenbeschaffenheit - Bestimmung der spezifischen elektrischen Leitfähigkeit In: Soil quality - Determination of the specific electrical conductivity Berlin: German Institute for Standardization
Diquattro, S., Castaldi, P., Ritch, S., Juhasz, A. L., Brunetti, G., Scheckel, K. G., Garau, G., & Lombi, E. (2021). Insights into the fate of antimony (Sb) in contaminated soils: ageing influence on Sb mobility, bioavailability, bioaccessibility and speciation. Science of The Total Environment, 145354.
EN 12457-2: 2002-09. Characterization of waste - Leaching; Compliance test for leaching of granular and sludges - Part 2: One stage batch test at a liquid to solid ratio of 10 l/kg with particle size below 4 mm (without or with size reduction). Brussels: CEN European Committee for Standardisation
Gleis, M., & Simon, F. G. (2016). Novellierung des BVT-Merkblattes Abfallverbrennung – Sachstand, Entwicklungstendenzen und neue Verfahren zur Aufbereitung von Rostaschen und Filterstäuben. In: K. J. Thomé-Kozmiensky (ed.), Mineralische Nebenprodukte und Abfälle 3 - Aschen, Schlacken, Stäube und Baurestmassen (Vol. 3, pp. 163-172). Neuruppin: TK Verlag Karl Thomé-Kozmiensky
Grathwohl, P., & Susset, B. (2009). Comparison of percolation to batch and sequential leaching tests: Theory and data. Waste Manage., 29(10), 2681-2688.
DOI 10.1016/j.wasman.2009.05.016
Hjelmar, O., van der Sloot, H. A., & van Zomeren, A. (2013). Hazard property classification of high temperature waste materials. Paper presented at the Fourteenth International Waste Management and Landfill Symposium, Sardinia_2013, S. Margherita di Pula, Italy
Holm, O., & Simon, F. G. (2017). Innovative treatment trains of bottom ash (BA) from municipal solid waste incineration (MSWI) in Germany. Waste Manage., 59, 229-236.
DOI 10.1016/j.wasman.2016.09.004
Holm, O., Wollik, E., & Bley, T. J. (2018). Recovery of copper from small grain size fractions of municipal solid waste incineration bottom ash by means of density separation. Int. J. Sust. Eng., 11(4), 250-260.
DOI 10.1080/19397038.2017.1355415
Hyks, J., & Hjelmar, O. (2018). Utilisation of Incineration Bottom Ash (IBA) from Waste Incineration - Prospects and Limits. In: O. Holm & E. Thome-Kozmiensky (eds.), Removal, Treatment and Utilisation of Waste Incineration Bottom Ash (pp. 11-24). Neuruppin: TK Verlag
Hyks, J., & Šyc, M. (2019). Utilisation of Incineration Bottom Ash in Road Construction. In: S. Thiel, E. Thomé-Kozmiensky, F. Winter, & D. Juchelkova (eds.), Waste Mangement, Vol. 9, Waste-to-Energy (pp. 731- 741). Nietwerder: TK-Verlag
ITAD. (2019). Jahresbericht 2019 (Annual report 2019) https://www.itad.de/service/downloads/itad-jahresbericht-2019-webformat.pdf, Düsseldorf: ITAD – Interessengemeinschaft der Thermischen Abfallbehandlungsanlagen in Deutschland e.V
Johnson, C. A., Kaeppeli, M., Brandenberger, S., Ulrich, A., & Baumann, W. (1999). Hydrological and geochemical factors affecting leachate composition in municipal solid waste incinerator bottom ash: Part II. The geochemistry of leachate from Landfill Lostorf, Switzerland. J. Contam. Hydrol., 40(3), 239-259.
Kalbe, U., & Simon, F.-G. (2020). Potential Use of Incineration Bottom Ash in Construction: Evaluation of the Environmental Impact. Waste and Biomass Valorization, 11(12), 7055–7065.
DOI 10.1007/s12649-020-01086-2
Krüger, O., Kalbe, U., Berger, W., Simon, F. G., & López Meza, S. (2012). Leaching Experiments on the Release of Heavy Metals and PAH from Soil and Waste Materials. J. Hazard. Mater., 207-208, 51-55.
DOI 10.1016/j.jhazmat.2011.02.016
Kuchta, K., & Enzner, V. (2015). Ressourceneffizienz der Metallrückgewinnung vor und nach der Verbrennung. In: K. J. Thomé-Kozmiensky (ed.), Mineralische Nebenprodukte und Abfälle 2 (pp. 105-116). Neuruppin: TK Verlag
López Meza, S., Kalbe, U., Berger, W., & Simon, F. G. (2010). Effect of contact time on the release of contaminants from granular waste materials during column leaching experiments. Waste Manage., 30(4), 565-571.
Okkenhaug, G., Almås, Å. R., Morin, N., Halea, S. E., & Arp, H. P. H. (2015). The presence and leachability of antimony in different wastes and waste handling facilities in Norway. Environ. Sci. Process Impacts, 17(11), 1880-1891.
DOI 10.1039/C5EM00210A
Sanusi, A., Wortham, H., Millet, M., & Mirabel, P. (1996). Chemical composition of rainwater in Eastern France. Atmos. Environ., 30(1), 59-71.
DOI 10.1016/1352-2310(95)00237-S
Schnabel, K., Brück, F., Pohl, S., Mansfeldt, T., & Weigand, H. (2021). Technically exploitable mineral carbonation potential of four alkaline waste materials and effects on contaminant mobility. Greenhouse Gases: Science and Technology.
Simon, F. G., & Andersson, K. H. (1995). InRec™ process for recovering materials from solid waste incineration residues. ABB Review(9), 15-20
Simon, F. G., Schmidt, V., & Carcer, B. (1995). Alterungsverhalten von MVA-Schlacken. Müll und Abfall, 27(11), 759-764
Šyc, M., Simon, F. G., Biganzoli, L., Grosso, M., & Hyks, J. (2018). Resource Recovery from Incineration Bottom Ash: Basics, Concepts, Principles. In: O. Holm & E. Thome-Kozmiensky (eds.), Removal, Treatment and Utilisation of Waste Incineration Bottom Ash (pp. 1-10). Neuruppin: TK Verlag
Šyc, M., Simon, F. G., Hyks, J., Braga, R., Biganzoli, L., Costa, G., Funari, V., & Grosso, M. (2020). Metal recovery from incineration bottom ash: state-of-the-art and recent developments. J. Haz. Mat., 393(122433), 1-17.
DOI 10.1016/j.jhazmat.2020.122433
Van Caneghem, J., Verbinnen, B., Cornelis, G., de Wijs, J., Mulder, R., Billen, P., & Vandecasteele, C. (2016). Immobilization of antimony in waste-to-energy bottom ash by addition of calcium and iron containing additives. Waste Manage., 54, 162-168.
van der Sloot, H. A., Kosson, D. S., & Hjelmar, O. (2001). Characteristics, treatment and utilization of residues from municipal waste incineration. Waste Manage., 21, 753-765.
DOI 10.1016/S0956-053X(01)00009-5
Verein Deutscher Ingenieure. (2014). VDI 3460, Emission Control, Thermal waste treatment, Fundamentals (Part 1). Berlin: Beuth Verlag
Yann Le Bihan, David Loranger-King, Nicolas Turgeon, Nadine Pouliot, Nicolas Moreau, Daniel Deschênes and Guy Rivard
Published 11 Sep 2021Title | Support | Price |
---|