an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU


  • Gratitude Charis - Botswana International University of Science and Technology - Chemical, Materials and Metallurgical Engineering, Botswana
  • Gwiranai Danha - Botswana International University of Science and Technology - Chemical, Materials and Metallurgical Engineering, Botswana
  • Edison Muzenda - Botswana International University of Science and Technology - Chemical, Materials and Metallurgical Engineering, Botswana

Released under CC BY-NC-ND

Copyright: © 2018 CISA Publisher


Since biomass and bio-waste to energy systems condense activities that have important socio-economic and environmental sustainability effects, it is important that viability and impact studies have a socio-economic dimension, beyond the techno-economic and institutional aspects. This is necessitated in particular, by the limited and scattered availability of biomass or its residues, links to agricultural and forestry activities and associated socio-economic sustainability issues like land use, harvesting, transporting and economic conversion plant supplies. Such socio-economic studies, done prior to the project, can reflect a lot on the feasibility of projects, likely impacts and even help to optimize facility locations, network configurations or fleet management at various points or on the whole the supply chain. When the studies are done in retrospect of the project, as impact studies, they show how bioenergy projects can transform societies. The impact studies can then be useful precursors to similar projects within the same country/region or other similar regions. This review classifies socio-economic study literature into ‘viability’ studies- done prior to the project; and ‘impact’ studies- usually done after the project, except for ‘projected impact studies’. The studies are also classified as ‘quantitative and systematic’ or ‘qualitative’. Nonetheless, there are occasional overlaps between these study classes. Intentionally designed integrated approaches could actually give more comprehensive results, although in most cases, they result in complex models. This classification can guide researchers to make the right choice of the socio-economic study to carry out based on their objectives.


Editorial History

  • Received: 24 Mar 2018
  • Revised: 18 Jun 2018
  • Accepted: 18 Jul 2018
  • Available online: 01 Aug 2018


Aksoy, B., Cullinan, H., Webster, D., Gue, K., Sukumaran, S., Eden, M., & Sammons, N. (2011). Woody Biomass and Mill Waste Utilization Opportunities in Alabama: Transportation Cost Minimization, Optimum Facility Location, Economic Feasibility, and Impact, 30(4).
DOI 10.1002/ep.10501

Amundson, J., Sukumara, S., Seay, J., & Badurdeen, F. (2015). Decision Support Models for Integrated Design of Bioenergy Supply Chains. Handbook of Bioenergy.
DOI 10.1007/978-3-319-20092-7_7

Awudu, I., & Zhang, J. (2012). Uncertainties and sustainability concepts in biofuel supply chain management: A review. Renewable and Sustainable Energy Reviews, 16(2), 1359–1368.
DOI 10.1016/j.rser.2011.10.016

Ba, B. H., Prins, C., & Prodhon, C. (2016). Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective. Renewable Energy, 87, 977–989.
DOI 10.1016/j.renene.2015.07.045

Badger, P., Badger, S., Puettmann, M., Steele, P., & Cooper, J. (2011). Techno-Economic Analysis: Prelimiary Assessment of Pyrolysis Oil Production Costs and Material Energy Balance Associated with a Transportable Fast Pyrolysis System. BioResources, 6, 34–47.

Bamière, L. (2013). JOINT RESEARCH UNIT IN Stochastic viability of second generation biofuel chains : Micro-economic spatial modeling in France ∗, 33(0), 0–21.

Barisa, A., Romagnoli, F., Blumberga, A., & Blumberga, D. (2015). Future biodiesel policy designs and consumption patterns in Latvia : a system dynamics model. Journal of Cleaner Production, 88, 71–82.
DOI 10.1016/j.jclepro.2014.05.067

Batidzirai, B., Smeets, E. M. W., & Faaij, A. P. C. (2012). Bioenergy for Sustainable Development in Africa, 117–130.
DOI 10.1007/978-94-007-2181-4

Bento, J., Ferreira, D. S., & Horridge, M. (2014). Land Use Policy Ethanol expansion and indirect land use change in Brazil. Land Use Policy, 36, 595–604.
DOI 10.1016/j.landusepol.2013.10.015

Celli, G., Ghiani, E., Loddo, M., Pilo, F., & Pani, S. (2008). Optimal location of biogas and biomass generation plants. Proceedings of the Universities Power Engineering Conference.
DOI 10.1109/UPEC.2008.4651490

Cruz, J. B., Tan, R. R., Culaba, A. B., & Ballacillo, J. A. (2009). A dynamic input-output model for nascent bioenergy supply chains. Applied Energy.
DOI 10.1016/j.apenergy.2009.04.007

Dassanayake, G. D. M., & Kumar, A. (2012). Techno-economic assessment of triticale straw for power generation. Applied Energy, 98, 236–245.
DOI 10.1016/j.apenergy.2012.03.030

De Campos Cesar Leão RR, Hamacher S, O. (2010). Optimization of Biodiesel Supply Chains Based on Small Farmers: a case study in Brazil. Bioresource Technology.

De Meyer, A., Cattrysse, D., Rasinmäki, J., & Van Orshoven, J. (2014). Methods to optimise the design and management of biomass-for-bioenergy supply chains: A review. Renewable and Sustainable Energy Reviews, 31, 657–670.
DOI 10.1016/j.rser.2013.12.036

Deenanath, E. D., Iyuke, S., & Rumbold, K. (2012). The bioethanol industry in sub-Saharan Africa: History, challenges, and prospects. Journal of Biomedicine and Biotechnology, 2012.
DOI 10.1155/2012/416491

E4tech. (2009). Review of Technologies for Gasification of Biomass and Wastes Final report. Retrieved from

Eason, J. P., & Cremaschi, S. (2014). A multi-objective superstructure optimization approach to biofeedstocks-to-biofuels systems design. Biomass and Bioenergy, 63, 64–75.
DOI 10.1016/j.biombioe.2014.02.010

Econergy. (2008). Mozambique Biofuels Assessment. Ministry of Energy of Mozambique, 511. Retrieved from

Ericsson, K. Ã., & Nilsson, L. J. (2006). Assessment of the potential biomass supply in Europe using a resource-focused approach. Biomass and Bioenergy, 30, 1–15.
DOI 10.1016/j.biombioe.2005.09.001

Freppaz, D., Minciardi, R., Robba, M., & Rovatti, M. (2004). Optimizing forest biomass exploitation for energy supply at a regional level, 26, 15–25.
DOI 10.1016/S0961-9534 (03)00079-5

Friends of the earth. (2009). Jatropha: Wonder crop? Retrieved from

Frombo, F., Minciardi, R., Robba, M., Rosso, F., & Sacile, R. (2009). Planning woody biomass logistics for energy production : A strategic decision model. Biomass and Bioenergy, 33(3), 372–383.
DOI 10.1016/j.biombioe.2008.09.008

Gasparatos, A., Von Maltitz, G. P., Johnson, F. X., Lee, L., Mathai, M., Puppim De Oliveira, J. A., & Willis, K. J. (2015). Biofuels in sub-Sahara Africa: Drivers, impacts and priority policy areas. Renewable and Sustainable Energy Reviews, 45, 879–901.
DOI 10.1016/j.rser.2015.02.006

Gold, S., & Seuring, S. (2011). Supply chain and logistics issues of bio-energy production. Journal of Cleaner Production, 19(1), 32–42.
DOI 10.1016/j.jclepro.2010.08.009

Hadidi, L. A., & Omer, M. M. (2017). A financial feasibility model of gasification and anaerobic digestion waste-to-energy (WTE) plants in Saudi Arabia. Waste Management, 59, 90–101.
DOI 10.1016/j.wasman.2016.09.030

Herreras Martínez, S., Van Eijck, J., Pereira Da Cunha, M., Guilhoto, J. J. M., Walter, A., & Faaij, A. (2013). Analysis of socio-economic impacts of sustainable sugarcane-ethanol production by means of inter-regional Input-Output analysis: Demonstrated for Northeast Brazil. Renewable and Sustainable Energy Reviews.
DOI 10.1016/j.rser.2013.07.050

Hombach, L. E., Cambero, C., Sowlati, T., & Walther, G. (2016). Optimal design of supply chains for second generation biofuels incorporating European biofuel regulations. Journal of Cleaner Production, 133, 565–575.
DOI 10.1016/j.jclepro.2016.05.107

Iakovou, E., Karagiannidis, A., Vlachos, D., Toka, A., & Malamakis, A. (2010). Waste biomass-to-energy supply chain management : A critical synthesis. Waste Management, 30(10), 1860–1870.
DOI 10.1016/j.wasman.2010.02.030

IRENA. (2016). Innovation Outlook Advanced Liquid Biofuels, 132. Retrieved from

Izquierdo, J., Minciardi, R., Montalvo, I., Robba, M., & Tavera, M. (2008). Particle Swarm Optimization for the biomass supply chain strategic planning. Proc. IEMSs 4th Biennial Meeting - Int. Congress on Environmental Modelling and Software: Integrating Sciences and Information Technology for Environmental Assessment and Decision Making, IEMSs 2008, 2, 1272–1280.

Ji, X., & Long, X. (2016). A review of the ecological and socioeconomic effects of biofuel and energy policy recommendations, 61, 41–52.
DOI 10.1016/j.rser.2016.03.026

Kanzian, C., Holzleitner, F., Stampfer, K., & Ashton, S. (2009). Regional Energy Wood Logistics – Optimizing Local Fuel Supply, 43(December 2008).

Kinoshita, T., Inoue, K., Iwao, K., Kagemoto, H., & Yamagata, Y. (2009). A spatial evaluation of forest biomass usage using GIS, 86, 1–8.
DOI 10.1016/j.apenergy.2008.03.017

Kunimitsu, Y., Takahashi, K., Furubayashi, T., & Nakata, T. (2013). Economic ripple effects of bioethanol production in ASEAN countries: Application of inter-regional input-output analysis. Japan Agricultural Research Quarterly, 47(3), 307–317.
DOI 10.6090/jarq.47.307

Leduc, S., Schwab, D., Dotzauer, E., Schmid, E., & Obersteiner, M. (2008). Optimal location of wood gasification plants for methanol production with heat recovery, (March), 1080–1091.
DOI 10.1002/er

Leduc, S., Starfelt, F., Dotzauer, E., Kindermann, G., Mccallum, I., Obersteiner, M., & Lundgren, J. (2010). Optimal location of lignocellulosic ethanol refineries with polygeneration in Sweden. EGY, 35(6), 2709–2716.
DOI 10.1016/

Leimbach, M., Popp, A., Lotze-Campen, H., Bauer, N., Dietrich, J. P., & Klein, D. (2011). 10 Integrated assessment models–the interplay of climate change, agriculture and land use in a policy tool. Handbook on Climate Change and Agriculture.

Martinez-Hernandez, Elias; Leach, Matthew; Yang, A. (2015). Impact of Bioenergy Production on Ecosystem Dynamics and Services—A Case Study on U.K. Heathlands.

Marvuglia, A., Benetto, E., Rege, S., & Jury, C. (2013). Modelling approaches for consequential life-cycle assessment (C-LCA) of bioenergy: Critical review and proposed framework for biogas production. Renewable and Sustainable Energy Reviews.
DOI 10.1016/j.rser.2013.04.031

Mele, F. D., Kostin, A. M., Guillén-Gosálbez, G., & Jiménez, L. (2011). Multi-objective Model for More Sustainable Fuel Supply Chains. Industrial & Engineering Chemistry Research.
DOI 10.1021/ie101400g

Mol, R. M. De, Annevelink, E., & Dooren, H. J. C. Van. (2010). Optimization of the logistics of agricultural biogas plants, (December).

Musango, J. K., Brent, A. C., Amigun, B., Pretorius, L., & Hans, M. (2012). Technovation A system dynamics approach to technology sustainability assessment : The case of biodiesel developments in South Africa, 32, 639–651.
DOI 10.1016/j.technovation.2012.06.003

Musango, J. K., Brent, A. C., Amigun, B., Pretorius, L., & Müller, H. (2011). Technology sustainability assessment of biodiesel development in South Africa : A system dynamics approach. Energy, 36(12), 6922–6940.
DOI 10.1016/

Nogueira, L. A. H., Antonio de Souza, L. G., Cortez, L. A. B., & Leal, M. R. L. V. (2017). Sustainable and Integrated Bioenergy Assessment for Latin America, Caribbean and Africa (SIByl-LACAf): The path from feasibility to acceptability. Renewable and Sustainable Energy Reviews, 76(March), 292–308.
DOI 10.1016/j.rser.2017.01.163

Panichelli, L., & Gnansounou, E. A. (2008). GIS-based approach for defining bioenergy facilities location : A case study in Northern Spain based on marginal delivery costs and resources competition between facilities, 32, 289–300.
DOI 10.1016/j.biombioe.2007.10.008

Pantaleo, A. M., & Shah, N. (2013). The Logistics of Bioenergy Routes for Heat and Power. Biofuels - Economy, Environment and Sustainability, 217–244.
DOI 10.5772/50478

Paolucci, N., Bezzo, F., & Tugnoli, A. (2016). A two-tier approach to the optimization of a biomass supply chain for pyrolysis processes. Biomass and Bioenergy, 84, 87–97.
DOI 10.1016/j.biombioe.2015.11.011

Papadopoulos, D. P., & Katsigiannis, P. A. (2002). Biomass energy surveying and techno-economic assessment of suitable CHP system installations, 22, 105–124.

Parikka, M. (2004). Global biomass fuel resources. Biomass and Bioenergy, 27, 613–620.
DOI 10.1016/j.biombioe.2003.07.005

Patel, M., Zhang, X., & Kumar, A. (2016). Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: A review. Renewable and Sustainable Energy Reviews, 53, 1486–1489.
DOI 10.1016/j.rser.2015.09.070

Pradhan, A., & Mbohwa, C. (2014). Development of biofuels in South Africa: Challenges and opportunities. Renewable and Sustainable Energy Reviews, 39, 1089–1100.
DOI 10.1016/j.rser.2014.07.131

Rentizelas, A. A., & Tatsiopoulos, I. P. (2010). Locating a bioenergy facility using a hybrid optimization method. International Journal of Production Economics, 123(1), 196–209.
DOI 10.1016/j.ijpe.2009.08.013

Shastri, Y., Hansen, A., Rodriguez, L., & Ting, K. (2013). Systems Informatics and Analysis of Biomass Feedstock Production. Pertanika Journal Science and Technology, 21(2), 273–279. Retrieved from

Shastri, Y., Rodríguez, L., Hansen, A., & Ting, K. C. (2011). Agent-Based Analysis of Biomass Feedstock Production Dynamics. Bioenergy Research, 4(4), 258–275.
DOI 10.1007/s12155-011-9139-1

Shi, X., Elmore, A., Li, X., Gorence, N. J., Jin, H., Zhang, X., & Wang, F. (2008). Using spatial information technologies to select sites for biomass power plants : A case study in Guangdong, 32, 35–43.
DOI 10.1016/j.biombioe.2007.06.008

Skoulou, V., & Zabaniotou, A. Ã. (2007). Investigation of agricultural and animal wastes in Greece and their allocation to potential application for energy production $, 11, 1698–1719.
DOI 10.1016/j.rser.2005.12.011

Sobrino, F. H., Monroy, C. R., & Pérez, J. L. H. (2011). Biofuels and fossil fuels: Life Cycle Analysis (LCA) optimization through productive resources maximization. Renewable and Sustainable Energy Reviews.
DOI 10.1016/j.rser.2011.03.010

Souza, A., Watanabe, M. D. B., Cavalett, O., Ugaya, C. M. L., & Bonomi, A. (2016). Social life cycle assessment of first and second-generation ethanol production technologies in Brazil. The International Journal of Life Cycle Assessment.
DOI 10.1007/s11367-016-1112-y

Tembo, G., Epplin, F. M., Huhnke, R. L., Tembo, G., Epplin, F. M., & Huhnke, R. L. (2018). Integrative Investment Appraisal of a Lignocellulosic Biomass-to-Ethanol Industry Integrative Investment Appraisal of a Lignocellulosic Biomass-to-Ethanol Industry, 28(3), 611–633.

Timilsina, G. R., & Shrestha, A. (2010). Biofuels Markets, Targets and Impacts. Retrieved from

Voivontas, D., Assimacopoulos, D., & Koukios, E. G. (2001). Assessment of biomass potential for power production : a GIS based method, 20, 101–112.

Von Maltitz, G. P., & Setzkorn, K. A. (2013). A typology of Southern African biofuel feedstock production projects. Biomass and Bioenergy, 59, 33–49.
DOI 10.1016/j.biombioe.2012.11.024

You, F., Graziano, D. J., & Snyder, S. W. (2012). Optimal Design of Sustainable Cellulosic Biofuel Supply Chains: Multiobjective Optimization Coupled with Life Cycle Assessment and Input – Output Analysis. AIChE Journal.
DOI 10.1002/aic.12637

Zamboni, A., Shah, N., Bezzo, F., & others. (2009). Spatially explicit static model for the strategic design of future bioethanol production systems. 1. Cost minimization. Energy & Fuels.

Zhan, F. B., Chen, X., Noon, C. E., & Wu, G. (2005). A GIS-enabled comparison of fixed and discriminatory pricing strategies for potential switchgrass-to-ethanol conversion facilities in Alabama, 28, 295–306.
DOI 10.1016/j.biombioe.2004.06.006