an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU


  • Marcello Casa - Department of Industrial Engineering, University of Salerno, Italy
  • Michele Miccio - Department of Industrial Engineering, University of Salerno, Italy
  • Giovanni De Feo - Department of Industrial Engineering, University of Salerno, Italy
  • Andrea Paulillo - Department of Chemical Engineering, University College London, United Kingdom of Great Britain and Northern Ireland - eLoop Srl, Italy
  • Roberto Chirone - eLoop srl, Italy - Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, Italy
  • Dalia Paulillo - eLoop Srl, Italy
  • Paola Lettieri - University College London, United Kingdom of Great Britain and Northern Ireland
  • Riccardo Chirone - Istituto di Scienze e Tecnologie per l’energia e mobilità sostenibili, Consiglio Nazionale delle Ricerche, Italy

Released under CC BY-NC-ND

Copyright: © 2021 CISA Publisher


The industrial processing of tomato leads to substantial amounts of residues, typically known as tomato pomace or by-products, which can represent as much as 10% by weight of fresh tomatoes. At present, these residues are either used as feedstock for animals or, in the worst case, disposed of in landfills. This represents a significant waste because tomato pomace contains high-value compounds like lycopene, a powerful antioxidant, cutin, which can be used as a starting material for biopolymers, and pectin, a gelling agent. This article presents an overview of technologies that valorize tomato by-products by recovering added-value compounds as well as generating fuel for energy production. These technologies include operations for extraction, separation, and exploitation of lycopene, cutin and pectin, as well as the processes for conversion of the solid residues to fuels. Data collected from the review has been used to develop a biorefinery scheme with the related mass flow balance, for a scenario involving the tomato supply chain of Regione Campania in Italy, using tomato by-products as feedstock.


Editorial History

  • Received: 04 Feb 2021
  • Revised: 25 Mar 2021
  • Accepted: 16 Apr 2021
  • Available online: 06 Jun 2021


Adiletta, G., Brachi, P., Riianova, E., Crescitelli, A., Miccio, M., Kostryukova, N., 2020. A Simplified Biorefinery Concept for the Valorization of Sugar Beet Pulp: Ecofriendly Isolation of Pectin as a Step Preceding Torrefaction, Waste Biomass Valori., 11, 2721–2733.
DOI 10.1007/s12649-019-00582-4

Alancay, M. M., Lobo, M. O., Quinzio, C. M., Iturriaga, L. B., 2017. Extraction and physicochemical characterization of pectin from tomato processing waste. J. Food. Meas. Charact., 11, 2119–2130.
DOI 10.1007/s11694-017-9596-0

Al-Wandawi, H., Abdul-Rahman, M., Al-Shaikhly, K., 1985. Tomato processing wastes as essential raw materials source. J. Agr. Food. Chem., 33, 804–807.
DOI 10.1021/jf00065a009

Baysal, T., Ersus, S., Starmans, D. A. J., 2000. Supercritical CO2 extraction of β-carotene and lycopene from tomato paste waste. J. Agr. Food. Chem, 48, 5507–5511.
DOI 10.1021/jf000311t

Benítez, J. J., Castillo, P. M., Del Río, J. C., León-Camacho, M., Domínguez, E., Heredia, A., Guzmán-Puyol, S., Athanassiou, A., Heredia-Guerrero, J. A., 2018. Valorization of tomato processing by-products: fatty acid extraction and production of bio-based materials. Materials, 11.
DOI 10.3390/ma11112211

Brachi, P., Miccio, F., Miccio, M., Ruoppolo, G., 2016a. Pseudo-component thermal decomposition kinetics of tomato peels via isoconversional methods. Fuel Process. Technol., 154, 243–250

Brachi, P., Miccio, F., Miccio, M., Ruoppolo, G., 2016b. Torrefaction of Tomato Peel Residues in a Fluidized Bed of Inert Particles and a Fixed-Bed Reactor
DOI 10.1021/acs.energyfuels.6b00328, Energy Fuels, 30, 4858-4868

Briones-Labarca, V., Giovagnoli-Vicuña, C., Cañas-Sarazúa, R., 2019. Optimization of extraction yield, flavonoids and lycopene from tomato pulp by high hydrostatic pressure-assisted extraction. Food Chem. 278, 751–759.
DOI 10.1016/j.foodchem.2018.11.106

Cadoni, E., Rita De Giorgi, M., Medda, E., Poma, G., 1999. Supercritical CO2 extraction of lycopene and β-carotene from ripe tomatoes. Dyes Pigments, 44, 27–32.
DOI 10.1016/S0143-7208(99)00065-0

Caseiro, M., Ascenso, A., Costa, A., Creagh-Flynn, J., Johnson, M., Simões, S., 2020. Lycopene in human health. Lwt-Food Sci. Technol. 127, 109323.
DOI 10.1016/j.lwt.2020.109323

Catalkaya, G., Kahveci, D., 2019. Optimization of enzyme assisted extraction of lycopene from industrial tomato waste. Sep. Purif. Technol. 219, 55–63.
DOI 10.1016/j.seppur.2019.03.006

Chemat-Djenni, Z., Ferhat, M. A., Tomao, V., Chemat, F., 2010. Carotenoid Extraction from Tomato Using a Green Solvent Resulting from Orange Processing Waste. J. Essent. Oil Bear. Pl., 13, 139–147.
DOI 10.1080/0972060X.2010.10643803

Cho, E.-H., Jung, H.-T., Lee, B.-H., Kim, H.-S., Rhee, J.-K., Yoo, S.-H., 2019. Green process development for apple-peel pectin production by organic acid extraction. Carbohyd. Polym. 204, 97–103.
DOI 10.1016/j.carbpol.2018.09.086

Cigognini, I., Montanari, A., Carrerars, R. D. L. T., Montserrat, G. C. B., 2015. Extraction method of a polyester polymer or cutin from the wasted tomato peels and polyester polimer so extracted (World Intellectual Property Organization Patent N. WO2015028299A1).

Cifarelli, A., Cigognini, I. M., Bolzoni, L., Montanari, A., 2019. Physical–chemical characteristics of cutin separated from tomato waste for the preparation of bio-lacquers. Adv. Sci. Eng., 11, 33–45.
DOI 10.32732/ase.2019.11.1.33

Commission Directive 2011/3/EU, COM, OJ L 013 (2011).

Del Valle, M., Cámara, M., Torija, M.-E., 2006. Chemical characterization of tomato pomace. J. Sci. Food Agr., 86, 1232–1236.
DOI 10.1002/jsfa.2474

Domínguez, E., Heredia‐Guerrero, J. A., Heredia, A., 2011. The biophysical design of plant cuticles: an overview. New Phytol., 189, 938–949.
DOI 10.1111/j.1469-8137.2010.03553.x

Domínguez, E., Heredia-Guerrero, J. A., Heredia, A., 2015. Plant cutin genesis: unanswered questions. Trends Plant Sci., 20, 551–558.
DOI 10.1016/j.tplants.2015.05.009

Commission Regulation (EU) No 231/2012, Pub. L. No. 32012R0231, 083 OJ L (2012).

FAO. (2019). Food and Agriculture Organization of the United Nations.

Fritsch, C., Staebler, A., Happel, A., Cubero Márquez, M. A., Aguiló-Aguayo, I., Abadias, M., Gallur, M., Cigognini, I. M., Montanari, A., López, M. J., Suárez-Estrella, F., Brunton, N., Luengo, E., Sisti, L., Ferri, M., Belotti, G., 2017. Processing, valorization and application of bio-waste derived compounds from potato, tomato, olive and cereals: a review. Sustainability-Basel, 9, 1492.
DOI 10.3390/su9081492

Giuffrè, A. M., Capocasale, M., Zappia, C., Poiana, M., 2017. Biodiesel from tomato seed oil: transesterification and characterisation of chemical-physical properties. Agron. Res., 15, 133–143

Giuffrè, A., Capocasale, M., 2016. Physicochemical composition of tomato seed oil for an edible use: The effect of cultivar. International Food Res. J. 23, 583–591

Giuffrè, A. M., Capocasale, M., Zappia, C., Sicari, V., Pellicanò, T. M., Poiana, M., Panzera, G., 2016. Tomato seed oil for biodiesel production. Eur. J. Lipid Sci. Tech., 118, 640–650.
DOI 10.1002/ejlt.201500002

Górecka, D., Wawrzyniak, A., Jędrusek-Golińska, A., Dziedzic, K., Hamułka, J., Kowalczewski, P.Ł., Walkowiak, J., 2020. Lycopene in tomatoes and tomato products. Open Chem. 18, 752–756.
DOI 10.1515/chem-2020-0050

Grassino, A. N., Halambek, J., Djaković, S., Rimac Brnčić, S., Dent, M., Grabarić, Z., 2016. Utilization of tomato peel waste from canning factory as a potential source for pectin production and application as tin corrosion inhibitor. Food Hydrocoll., 52, 265–274.
DOI 10.1016/j.foodhyd.2015.06.020

Gustavsson, J., Cederberg, C., Sonesson, U., 2011. Global food losses and food waste: extent, causes and prevention; study conducted for the International Congress Save Food! at Interpack 2011, [16-17 May], Düsseldorf, Germany. Food and Agriculture Organization of the United Nations

Heredia, A., 2003. Biophysical and biochemical characteristics of cutin, a plant barrier biopolymer. Biochim. Biophys. Acta, 1620, 1–7.
DOI 10.1016/s0304-4165(02)00510-x

Ho, K. K. H. Y., Ferruzzi, M. G., Liceaga, A. M., San Martín-González, M. F., 2015. Microwave-assisted extraction of lycopene in tomato peels: Effect of extraction conditions on all-trans and cis-isomer yields. LWT-Food Sci. Technol., 62, 160–168.
DOI 10.1016/j.lwt.2014.12.061

ISTAT. (2020). Istituto Nazionale di Statistica.

Kakabouki, I., Folina, A., Efthimiadou, A., Karydogianni, S., Zisi, C., Kouneli, V., Kapsalis, N.C., Katsenios, N., Travlos, I., 2021. Evaluation of Processing Tomato Pomace after Composting on Soil Properties, Yield, and Quality of Processing Tomato in Greece. Agron. 11, 88.
DOI 10.3390/agronomy11010088

Kaur, D., Wani, A. A., Oberoi, D. P. S., Sogi, D. S., 2008. Effect of extraction conditions on lycopene extractions from tomato processing waste skin using response surface methodology. Food Chem., 108, 711–718.
DOI 10.1016/j.foodchem.2007.11.002

Kaur, G., Sandal, A., Dhillon, N., 2017. Lycopene and human health-A review. Agric. Rev. 38, 282-289.
DOI 10.18805/ag.R-1741

Keegan, D., Kretschmer, B., Elbersen, B., Panoutsou, C., 2013. Cascading use: a systematic approach to biomass beyond the energy sector. Biofuel. Bioprod. Biorefin., 7, 193–206.
DOI 10.1002/bbb.1351

Khiari, B., Moussaoui, M., Jeguirim, M., 2019. Tomato-Processing By-Product Combustion: Thermal and Kinetic Analyses. Mater. 12, 553.
DOI 10.3390/ma12040553

Kim, Y. W., Kim, M. J., Chung, B. Y., Bang, D. Y., Lim, S. K., Choi, S. M., Lim, D. S., Cho, M. C., Yoon, K., Kim, H. S., Kim, K. B., Kim, Y. S., Kwack, S. J., Lee, B.-M., 2013. Safety evaluation and risk assessment of d-limonene. J. Toxicol. Env. Heal. B, 161, 17–38.
DOI 10.1080/10937404.2013.769418

Knoblich, M., Anderson, B., Latshaw, D., 2005. Analyses of tomato peel and seed by-products and their use as a source of carotenoids. J. Sci. Food Agr., 85, 1166–1170.
DOI 10.1002/jsfa.2091

Liadakis, G. N., Tzia, C., Oreopoulou, V., Thomopoulos, C. D., 1995. Protein isolation from tomato seed meal, extraction optimization. J. Food Sci., 60, 477–482.
DOI 10.1111/j.1365-2621.1995.tb09807.x

Mangut, V., Sabio, E., Gañán, J., González, J. F., Ramiro, A., González, C. M., Román, S., Al-Kassir, A., 2006. Thermogravimetric study of the pyrolysis of biomass residues from tomato processing industry. Fuel Process. Technol., 87, 109–115.
DOI 10.1016/j.fuproc.2005.08.006

Manrich, A., Moreira, F. K. V., Otoni, C. G., Lorevice, M. V., Martins, M. A., Mattoso, L. H. C., 2017. Hydrophobic edible films made up of tomato cutin and pectin. Carbohyd. Polym., 164, 83–91.
DOI 10.1016/j.carbpol.2017.01.075

Martínez-Cámara, S., Rubio, S., Del Río, H., Rodríguez-Sáiz, M., Barredo, J.-L., 2018. Lycopene Production by Mated Fermentation of Blakeslea trispora. In: Barreiro C., Barredo JL. (eds) Microbial Carotenoids. Methods in Molecular Biology, vol 1852. Humana Press, New York, NY.
DOI 10.1007/978-1-4939-8742-9_15

May, C. D., 1990. Industrial pectins: sources, production and applications. Carbohyd. Polym., 12, 79–99.
DOI 10.1016/0144-8617(90)90105-2

Mizael, W., Costa, R., Rodrigo, G., Cruz, B., Carvalho, F., Ribeiro, N., Lima, A., Domínguez, R., Lorenzo, J.M., 2020. Effect of the Use of Tomato Pomace on Feeding and Performance of Lactating Goats. Animals 10, 1574.
DOI 10.3390/ani10091574

Nagarajan, J., Ramanan, R.N., Raghunandan, M.E., Galanakis, C.M., Krishnamurthy, N.P., 2017. Chapter 8 – Carotenoids. IN: Galanakis, C.M. (eds.), Nutraceutical and Functional Food Components. Academic Press.
DOI 10.1016/B978-0-12-805257-0.00008-9

Naviglio, D., Caruso, T., Iannece, P., Aragòn, A., Santini, A., 2008. Characterization of high purity lycopene from tomato wastes using a new pressurized extraction approach. J. Agr. Food Chem., 56, 6227–6231.
DOI 10.1021/jf703788c

Pandya, D., 2017. Standardization of Solvent Extraction Process for Lycopene Extraction from Tomato Pomace. J. Appl. Biotechnol. Bioen. 2, 12-16.
DOI 10.15406/jabb.2017.02.00019

Pectin Market, Apple Pectin, Fruit Pectin, Citrus Pectin. (2019).

Pellicanò, T.M., Sicari, V., Loizzo, M.R., Leporini, M., Falco, T., Poiana, M., 2020. Optimizing the supercritical fluid extraction process of bioactive compounds from processed tomato skin by-products. Food Sci. Technol. 40, 692–697.
DOI 10.1590/fst.16619

Pereira, P. H. F., Oliveira, T. Í. S., Rosa, M. F., Cavalcante, F. L., Moates, G. K., Wellner, N., Waldron, K. W., Azeredo, H. M. C., 2016. Pectin extraction from pomegranate peels with citric acid. Int. J. Biol. Macromol., 88, 373–379.
DOI 10.1016/j.ijbiomac.2016.03.074

Rahimi, S., Mikani, M., 2019. Lycopene green ultrasound-assisted extraction using edible oil accompany with response surface methodology (RSM) optimization performance: Application in tomato processing wastes. Microchem. J. 146, 1033–1042.
DOI 10.1016/j.microc.2019.02.039

Ranveer, R.C., Patil, S.N., Sahoo, A.K., 2013. Effect of different parameters on enzyme-assisted extraction of lycopene from tomato processing waste. Food Bioprod. Process. 91, 370–375.
DOI 10.1016/j.fbp.2013.01.006

Ravichandran, C., Badgujar, P. C., Gundev, P., Upadhyay, A., 2018. Review of toxicological assessment of d-limonene, a food and cosmetics additive. Food Chem. Toxicol., 120, 668–680.
DOI 10.1016/j.fct.2018.07.052

Rossini, G., Toscano, G., Duca, D., Corinaldesi, F., Foppa Pedretti, E., Riva, G., 2013. Analysis of the characteristics of the tomato manufacturing residues finalized to the energy recovery. Biomass Bioener., 51, 177–182.
DOI 10.1016/j.biombioe.2013.01.018

Ruiz Celma, A., Cuadros, F., López-Rodríguez, F., 2012. Characterization of pellets from industrial tomato residues. Food Bioprod. Process., 90, 700–706.
DOI 10.1016/j.fbp.2012.01.007

Shakir, I. K., Salih, S. J., 2015. Extraction of essential oils from citrus by-products using microwave steam distillation. Iraqi Journal of Chemical and Petroleum Engineering, 16, 11–22

Silva, Y. P. A., Borba, B. C., Pereira, V. A., Reis, M. G., Caliari, M., Brooks, M. S.-L., Ferreira, T. A. P. C., 2019. Characterization of tomato processing by-product for use as a potential functional food ingredient: nutritional composition, antioxidant activity and bioactive compounds. Int. J. Food Sci. Nutr., 70, 150–160.
DOI 10.1080/09637486.2018.1489530

Sriamornsak, P., 2003. Chemistry of pectin and its pharmaceutical uses: a review. Silpakorn Univ. J. Soc. Sci. Humanit. Arts, 3, 206.

Tomato News., 2019.

Telmo, C., Lousada, J., 2011. Heating values of wood pellets from different species. Biomass Bioener., 35, 2634–2639.
DOI 10.1016/j.biombioe.2011.02.043

Ventura, M. R., Pieltain, M. C., Castanon, J. I. R., 2009. Evaluation of tomato crop by-products as feed for goats. Anim. Feed Sci. Tech., 154, 271–275.
DOI 10.1016/j.anifeedsci.2009.09.004

Wang, L., Weller, C. L., 2006. Recent advances in extraction of nutraceuticals from plants. Trends Food Sci. Tech., 17, 300–312.
DOI 10.1016/j.tifs.2005.12.004

Yapo, B. M., 2009. Lemon juice improves the extractability and quality characteristics of pectin from yellow passion fruit by-product as compared with commercial citric acid extractant. Bioresource Technol., 100, 3147–3151.
DOI 10.1016/j.biortech.2009.01.039

Yapo, B. M., Robert, C., Etienne, I., Wathelet, B., Paquot, M., 2007. Effect of extraction conditions on the yield, purity and surface properties of sugar beet pulp pectin extracts. Food Chem., 100, 1356–1364.
DOI 10.1016/j.foodchem.2005.12.012

Yilmaz, T., Kumcuoglu, S., Tavman, S., 2017. Ultrasound Assisted Extraction of Lycopene and b–carotene from Tomato Processing Wastes. Ital. J. Food Sci. 29.
DOI 10.14674/1120-1770/ijfs.v481

Zuorro, A., 2020. Enhanced lycopene extraction from tomato peels by optimized mixed-polarity solvent mixtures. Molecules 25.
DOI 10.3390/molecules25092038