an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU


  • Geneviève Groleau - Chemical Engineering Department, Polytechnique de Montreal, Canada
  • Fabrice Tanguay-Rioux - Chemical Engineering Department, Polytechnique de Montreal, Canada
  • Laurent Spreutels - Chemical Engineering Department, Polytechnique de Montreal, Canada
  • Martin Heroux - Department of Environment, City of Montreal, Canada
  • Robert Legros - Department of Environment, City of Montreal, Canada


Released under CC BY-NC-ND

Copyright: © 2018 CISA Publisher


This paper presents the development of a comprehensive gasification module designed to be integrated in a MFA-LCA framework. From existing gasification models present in the literature, the most appropriate modelling strategy is selected and implemented into the module. This module needs to be able to capture the influence of input parameters, such as gasification reactor type, oxidizing agent, feedstock composition and operating conditions on the process outputs, including syngas yield, its composition and LHV, as well as tar and char contents. A typical gasification process is usually modelled in four steps: drying, pyrolysis, oxidation and reduction. Models representing each of these steps are presented in this paper. Since the type of gasification reactor is taken into account in the module, models for downdraft moving bed and bubbling fluidized bed reactor are also reviewed. The gasification module will be integrated into a MFA framework (VMR-Sys), which enables calculation of relevant gasifier feedstock parameters, such as moisture content, composition, properties and particle size distribution. Outputs from the module will also include elemental compositions obtained from VMR-Sys calculations. Finally, all outputs from the module will be used to build LCA-inventory data.


Editorial History

  • Received: 19 Nov 2018
  • Revised: 15 Aug 2019
  • Accepted: 27 Aug 2019
  • Available online: 26 Sep 2019


Agarwal, G., Liu, G., & Lattimer, B. (2014). Pyrolysis and Oxidation of Cardboard. Fire Safety Science, 11, 124–137.
DOI 10.3801/IAFSS.FSS.11-124

Arena, U. (2012). Process and technological aspects of municipal solid waste gasification. A review. Waste Management, 32(4), 625–639.
DOI 10.1016/j.wasman.2011.09.025

Arena, U., & Di Gregorio, F. (2013). Element partitioning in combustion- and gasification-based waste-to-energy units. Waste Management, 33(5), 1142–1150.
DOI 10.1016/j.wasman.2013.01.035

Babu, B. V., & Sheth, P. N. (2006). Modeling and simulation of reduction zone of downdraft biomass gasifier: Effect of char reactivity factor. Energy Conversion and Management, 47(15), 2602–2611.
DOI 10.1016/j.enconman.2005.10.032

Bailie, R. C., Everett, J. W., Liptak, B. G., Liu, D. H. F., Rugg, F. M., & Switzenbaum, M. S. (1997). Solid waste. In Environmental Engineers’ Handbook (Second Edition). Boca Raton: CRC Press. Retrieved from

Bandara, J., Eikeland, M., & Moldestad, B. M. E. (2017). Analyzing the effects of particle density, size, size distribution and shape for minimum fluidization velocity with Eulerian-Lagrangian CFD simulation (pp. 60–65). Presented at the Proceedings of the 58th Conference on Simulation and Modelling (SIMS 58) Reykjavik, Iceland, September 25th – 27th, 2017.
DOI 10.3384/ecp1713860

Basu, P. (2010). Gasification Theory and Modeling of Gasifiers. In Biomass Gasification Design Handbook (pp. 117–165). Elsevier.
DOI 10.1016/B978-0-12-374988-8.00005-2

Basu, P. (2013). Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory. San Diego, UNITED STATES: Elsevier Science & Technology. Retrieved from

Clarke, L. B., & Sloss, L. L. (1992). Trace elements - emissions from coal combustion and gasification. London: IEA Coal Research

Couhert, C., Commandre, J.-M., & Salvador, S. (2009). Is it possible to predict gas yields of any biomass after rapid pyrolysis at high temperature from its composition in cellulose, hemicellulose and lignin? Fuel, 88(3), 408–417.
DOI 10.1016/j.fuel.2008.09.019

Dejtrakulwong, C., & Patumsawad, S. (2014). Four Zones Modeling of the Downdraft Biomass Gasification Process: Effects of Moisture Content and Air to Fuel Ratio. Energy Procedia, 52, 142–149.
DOI 10.1016/j.egypro.2014.07.064

Di Blasi, C. & Branca, C. (2013). Modeling a stratified downdraft wood gasifier with primary and secondary air entry. Fuel, 104, 847–860.
DOI 10.1016/j.fuel.2012.10.014

Di Blasi, C. (2000). Dynamic behaviour of stratified downdraft gasifiers. Chemical Engineering Science, 55(15), 2931–2944.
DOI 10.1016/S0009-2509(99)00562-X

Fogler, H. S. (2016). Elements of chemical reaction engineering: H. Scott Fogler (Fifth edition). Prentice Hall

Garcia-Barcaicao, P., Mastral, J.F., Ceamanos, J., Berrueco, C., and Serrano, S. (2008). Gasification of biomass/high density polyethylene mixtures in a downdraft gasifier. Bioresource Technology, 99(13), 5485-91.
DOI 10.1016/j.biortech.2007.11.003

Gerber, S., Behrendt, F., & Oevermann, M. (2010). An Eulerian modeling approach of wood gasification in a bubbling fluidized bed reactor using char as bed material. Fuel, 89(10), 2903–2917.
DOI 10.1016/j.fuel.2010.03.034

Gerber, S., & Oevermann, M. (2014). A two dimensional Euler–Lagrangian model of wood gasification in a charcoal bed – Part I: model description and base scenario. Fuel, 115, 385–400.
DOI 10.1016/j.fuel.2013.06.049

Giltrap, D. L., McKibbin, R., & Barnes, G. R. G. (2003). A steady state model of gas-char reactions in a downdraft biomass gasifier. Solar Energy, 74(1), 785–791.
DOI 10.1016/S0038-092X(03)00091-4

Grammelis, P., Basinas, P., Malliopoulou, A., & Sakellaropoulos, G. (2009). Pyrolysis kinetics and combustion characteristics of waste recovered fuels. Fuel, 88(1), 195–205.
DOI 10.1016/j.fuel.2008.02.002

Gupta, S., & Bhaskaran, S. (2018). Numerical Modelling of Fluidized Bed Gasification: An Overview. In S. De, A. K. Agarwal, V. S. Moholkar, & B. Thallada (Eds.), Coal and Biomass Gasification (pp. 243–280). Singapore: Springer Singapore.
DOI 10.1007/978-981-10-7335-9_10

Hernández, J. J., Aranda-Almansa, G., & Bula, A. (2010). Gasification of biomass wastes in an entrained flow gasifier: Effect of the particle size and the residence time. Fuel Processing Technology, 91(6), 681–692.
DOI 10.1016/j.fuproc.2010.01.018

Jafari, R., Sotudeh-Gharebagh, R., & Mostoufi, N. (2004). Modular Simulation of Fluidized Bed Reactors. Chemical Engineering & Technology, 27(2), 123–129.
DOI 10.1002/ceat.200401908

Jaya, T.H., Aye, L., Fuller, R.J., and Stewart, D.F. (2003). Computer simulation of a downdraft wood gasifier for tea drying. Biomass and Bioenergy, 25(4), 459-469.
DOI 10.1016/S0961-9534(03)0037-0

Jung, C.H., Matsuto, T., & Tanaka, N. (2005). Behavior of metals in ash melting and gasification-melting of municipal solid waste (MSW). Waste Management, 25(3), 301–310.
DOI 10.1016/j.wasman.2004.08.012

Kamińska-Pietrzak, N., & Smoliński, A. (2013). Selected Environmental Aspects of Gasification and Co-Gasification of Various Types of Waste. Journal of Sustainable Mining, 12(4), 6–13.
DOI 10.7424/jsm130402

Klinghoffer, N., Castaldi, M. J., & Nzihou, A. (2011). Beneficial use of ash and char from biomass gasification. In Proceedings of the 19th Annual North American Waste-to-Energy Conference NAWTEC19. Lancaster, Pennsylvania, USA. Retrieved from

Komilis, D. P., & Ham, R. K. (2003). The effect of lignin and sugars to the aerobic decomposition of solid wastes. Waste Management, 23(5), 419–423.
DOI 10.1016/S0956-053X(03)00062-X

Levenspiel, O., & Kunii, D. (2012). Fluidization Engineering (2nd ed.). Elsevier

Liu, H., Elkamel, A., Lohi, A., & Biglari, M. (2013). Computational Fluid Dynamics Modeling of Biomass Gasification in Circulating Fluidized-Bed Reactor Using the Eulerian–Eulerian Approach. Industrial & Engineering Chemistry Research, 52(51), 18162–18174.
DOI 10.1021/ie4024148

Luo, S., Xiao, B., Guo, X., Hu, Z., Liu, S., & He, M. (2009). Hydrogen-rich gas from catalytic steam gasification of biomass in a fixed bed reactor: Influence of particle size on gasification performance. International Journal of Hydrogen Energy, 34(3), 1260–1264.
DOI 10.1016/j.ijhydene.2008.10.088

Lv, P. M., Xiong, Z. H., Chang, J., Wu, C. Z., Chen, Y., & Zhu, J. X. (2004). An experimental study on biomass air-steam gasification in a fluidized bed. Bioresource Technology, 95(1), 95–101.
DOI 10.1016/j.biortech.2004.02.003

Milne T.A., Evans R.J., Abatzoglou N. (1998). Biomass gasifier “tars”: their nature, formation and conversion. National Renewable Energy Laboratory, Golden, CO, report no: NREL/TP-570-25357

Mostoufi, N., Cui, H., & Chaouki, J. (2001). A Comparison of Two- and Single-Phase Models for Fluidized-Bed Reactors. Industrial & Engineering Chemistry Research, 40(23), 5526–5532.
DOI 10.1021/ie010121n

Rhodes, M. J. (2008). Introduction to Particle Technology. Wiley. Retrieved from

Salem, A. M., & Paul, M. C. (2018). An integrated kinetic model for downdraft gasifier based on a novel approach that optimises the reduction zone of gasifier. Biomass and Bioenergy, 109, 172–181.
DOI 10.1016/j.biombioe.2017.12.030

Sharma, A.K. (2011). Modeling and simulation of a downdraft biomass gasifier 1. Model development and validation. Energy Conversion and Management, 52(2), 1386–1396.
DOI 10.1016/j.enconman.2010.10.001

Sharma, A.K., Ravi, M. R., & Kohli, S. (2006). Modelling product composition in slow pyrolysis of wood, 13

Sheth, P. N., & Babu, B. V. (2006). Kinetic Modeling of the Pyrolysis of Biomass. In National Conference on Environmental Conservation (NCEC-2006) (pp. 453–458). Pilani, India

Shokri, N., & Or, D. (2011). What determines drying rates at the onset of diffusion controlled stage-2 evaporation from porous media? Water Resources Research, 47(9).
DOI 10.1029/2010WR010284

Sikarwar, V. S., Zhao, M., Clough, P., Yao, J., Zhong, X., Memon, M. Z. & Fennell, P. S. (2016). An overview of advances in biomass gasification. Energy & Environmental Science, 9(10), 2939–2977.
DOI 10.1039/C6EE00935B

Sikarwar, V. S., Zhao, M., Fennell, P. S., Shah, N., & Anthony, E. J. (2017). Progress in biofuel production from gasification. Progress in Energy and Combustion Science, 61, 189–248.
DOI 10.1016/j.pecs.2017.04.001

Tanigaki, N., & Ishida, Y. (2014). Waste Gasification Technology with Direct Melting for Energy and Material Recovery, 14. Retrieved from

Themelis, N. J., Kim, Y. H., & Brady, M. H. (2002). Energy recovery from New York City solid wastes. Waste Management and Research, 20(3), 223–233. Retrieved from
DOI 10.1177/0734242X0202000303

Thunman, H., Niklasson, F., Johnsson, F., & Leckner, B. (2001). Composition of Volatile Gases and Thermochemical Properties of Wood for Modeling of Fixed or Fluidized Beds. Energy & Fuels, 15(6), 1488–1497.
DOI 10.1021/ef010097q

Tinaut, F. V., Melgar, A., Pérez, J. F., & Horrillo, A. (2008). Effect of biomass particle size and air superficial velocity on the gasification process in a downdraft fixed bed gasifier. An experimental and modelling study. Fuel Processing Technology, 89(11), 1076–1089.
DOI 10.1016/j.fuproc.2008.04.010

US department of Energy. (2008). Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology

Vejahati, F., Xu, Z., & Gupta, R. (2010). Trace elements in coal: Associations with coal and minerals and their behavior during coal utilization – A review. Fuel, 89(4), 904–911.
DOI 10.1016/j.fuel.2009.06.013

Wang, X., De la Cruz, F. B., Ximenes, F., & Barlaz, M. A. (2015). Decomposition and carbon storage of selected paper products in laboratory-scale landfills. Science of The Total Environment, 532, 70–79.
DOI 10.1016/j.scitotenv.2015.05.132

Wilk, V., Aichernig, C., & Hofbauer, H. (2011). Waste Wood Gasification: Distribution of Nitrogen, Sulphur and Chlorine in a Dual Fluidised Bed Steam Gasifier, 9

Williams, P. T., & Williams, E. A. (1999). Interaction of Plastics in Mixed-Plastics Pyrolysis. Energy & Fuels, 13(1), 188–196.
DOI 10.1021/ef980163x