Share
Released under CC BY-NC-ND
Copyright: © 2020 CISA Publisher
Agrafioti, E., Bouras, G., Kalderis, D. & Diamadopoulos, E. (2013). Biochar production by sewage sludge pyrolysis. Journal of Analytical and Applied Pyrolysis, 101, 72–78.
DOI 10.1016/j.jaap.2013.02.010
Alhashimi, H. A. & Aktas, C. B. (2017). Life cycle environmental and economic performance of biochar compared with activated carbon: A meta-analysis. Resources, Conservation and Recycling, 118, 13–26.
DOI 10.1016/j.resconrec.2016.11.016
Bauer, T., Andreas, L., Lagerkvist, A. & Burgman, L. E. (2020). EFFECTS OF THE DIFFERENT IMPLEMENTATION OF LEGISLATION RELATING TO SEWAGE SLUDGE DISPOSAL IN THE EU. Detritus(10), 92–99.
DOI 10.31025/2611-4135/2020.13944
Barry, D., Barbiero, C., Briens, C. & Berruti, F. (2019). Pyrolysis as an economical and ecological treatment option for municipal sewage sludge. Biomass and Bioenergy, 122, 472–480.
DOI 10.1016/j.biombioe.2019.01.041
Breulmann, M., van Afferden, M., Müller, R. A., Schulz, E. & Fühner, C. (2017). Process conditions of pyrolysis and hydrothermal carbonization affect the potential of sewage sludge for soil carbon sequestration and amelioration. Journal of Analytical and Applied Pyrolysis, 124, 256–265.
DOI 10.1016/j.jaap.2017.01.026
Bridle, T. R. & Pritchard, D. (2004). Energy and nutrient recovery from sewage sludge via pyrolysis. Water Science and Technology, 50(9), 169–175.
DOI 10.2166/wst.2004.0562
Cao, Y. & Pawłowski, A. (2012). Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis: Brief overview and energy efficiency assessment. Renewable and Sustainable Energy Reviews, 16(3), 1657–1665.
DOI 10.1016/j.rser.2011.12.014
Cao, Y. & Pawłowski, A. (2013). Life cycle assessment of two emerging sewage sludge-to-energy systems: evaluating energy and greenhouse gas emissions implications. Bioresource Technology, 127, 81–91.
DOI 10.1016/j.biortech.2012.09.135
Christodoulou, A. & Stamatelatou, K. (2016). Overview of legislation on sewage sludge management in developed countries worldwide. Water science and technology: a journal of the International Association on Water Pollution Research, 73(3), 453–462.
DOI 10.2166/wst.2015.521
Cordell, D. & White, S. (2011). Peak Phosphorus: Clarifying the Key Issues of a Vigorous Debate about Long-Term Phosphorus Security. Sustainability, 3(12), 2027–2049.
DOI 10.3390/su3102027
Denkert, R., Kopp, J., Meyer, H., Wolf, S., Ewert, W., Lou, U., Melsa, A., Roediger, M. & Sievers, M. (2013). Merkblatt DWA-M 366: Maschinelle Schlammentwässerung (2013. Aufl.). DWA-Merkblatt: M 366. Deutsche Vereinigung für Wasserwirtschaft Abwasser und Abfall
Deutsches Institut für Normung. (2009). Umweltmanagement - Ökobilanz - Grundsätze und Rahmenbedingungen: (ISO 14040:2006); deutsche und englische Fassung EN ISO 14040:2009 (Deutsche Norm DIN EN ISO 14040). Berlin
Egle, L., Rechberger, H., Krampe, J. & Zessner, M. (2016). Phosphorus recovery from municipal wastewater: An integrated comparative technological, environmental and economic assessment of P recovery technologies. The Science of the total environment, 571, 522–542.
DOI 10.1016/j.scitotenv.2016.07.019
ELIQUO. (2020). EloDry® sewage sludge drying technology. Retrieved from https://www.eliquo-we.com/en/elodry.html
Elser, J. & Bennett, E. (2011). Phosphorus cycle: A broken biogeochemical cycle. Nature, 478(7367), 29–31.
DOI 10.1038/478029a
Ennis, C. J., Evans, A. G., Islam, M., Ralebitso-Senior, T. K. & Senior, E. (2012). Biochar: Carbon Sequestration, Land Remediation, and Impacts on Soil Microbiology. Critical Reviews in Environmental Science and Technology, 42(22), 2311–2364.
DOI 10.1080/10643389.2011.574115
Frišták, V., Pipíška, M. & Soja, G. (2018). Pyrolysis treatment of sewage sludge: A promising way to produce phosphorus fertilizer. Journal of Cleaner Production, 172, 1772–1778.
DOI 10.1016/j.jclepro.2017.12.015
Gievers, F., Loewen, A. & Nelles, M. (2019). Hydrothermal Carbonization (HTC) of Sewage Sludge: GHG Emissions of Various Hydrochar Applications. In: L. Schebek, C. Herrmann, F. Cerdas (eds), Sustainable Production, Life Cycle Engineering and Management. Progress in Life Cycle Assessment (Bd. 142, P. 59–68). Springer International Publishing.
DOI 10.1007/978-3-319-92237-9_7
Glaser, B. & Lehr, V.-I. (2019). Biochar effects on phosphorus availability in agricultural soils: A meta-analysis. Scientific reports, 9(1), 9338.
DOI 10.1038/s41598-019-45693-z
Gourdet, C., Girault, R., Berthault, S., Richard, M., Tosoni, J. & Pradel, M. (2017). In quest of environmental hotspots of sewage sludge treatment combining anaerobic digestion and mechanical dewatering: A life cycle assessment approach. Journal of Cleaner Production, 143, 1123–1136.
DOI 10.1016/j.jclepro.2016.12.007
Haupt, M. & Hellweg, S. (2019). Measuring the environmental sustainability of a circular economy. Environmental and Sustainability Indicators, 1-2, 100005.
DOI 10.1016/j.indic.2019.100005
Huijbregts, M. A. J., Steinmann, Z. J. N., Elshout, P. M. F., Stam, G., Verones, F., Vieira, M., Zijp, M., Hollander, A. & van Zelm, R. (2017). ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. The International Journal of Life Cycle Assessment, 22(2), 138–147.
DOI 10.1007/s11367-016-1246-y
Jacobs, U., Fehr, G., Geyer J., Heindl, A., Husmann, M., Kellermann, H.-G., Lehrmann, F., Ritterbusch, S., Schönfeld, R., Tomalla, M., Beatt, B., Hanßen, H., Haselwimmer, T., Hochsgürtel, H., Hüppe, P., Jasper, M., Kappa, S., Kristkeitz, R., Ludwig, P., Maurer, M.; Pietsch, B.; Schmittel, P.; Six, J.; Stamer, F., Werther, J. (2019). Merkblatt DWA-M 379 Klärschlammtrocknung (Entwurf) (2019. Aufl.). DWA-Regelwerk: Bd. 379. Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall
Leinweber, P., Bathmann, U., Buczko, U., Douhaire, C., Eichler-Löbermann, B., Frossard, E., Ekardt, F., Jarvie, H., Krämer, I., Kabbe, C., Lennartz, B., Mellander, P.-E., Nausch, G., Ohtake, H. & Tränckner, J. (2018). Handling the phosphorus paradox in agriculture and natural ecosystems: Scarcity, necessity, and burden of P. Ambio, 47(Suppl 1), 3–19.
DOI 10.1007/s13280-017-0968-9
Li, H. & Feng, K. (2018). Life cycle assessment of the environmental impacts and energy efficiency of an integration of sludge anaerobic digestion and pyrolysis. Journal of Cleaner Production, 195, 476–485.
DOI 10.1016/j.jclepro.2018.05.259
Marazza, D., Macrelli, S., D’Angeli, M., Righi, S., Hornung, A. & Contin, A. (2019). Greenhouse gas savings and energy balance of sewage sludge treated through an enhanced intermediate pyrolysis screw reactor combined with a reforming process. Waste management, 91, 42–53.
DOI 10.1016/j.wasman.2019.04.054
Mayer, B. K., Baker, L. A., Boyer, T. H., Drechsel, P., Gifford, M., Hanjra, M. A., Parameswaran, P., Stoltzfus, J., Westerhoff, P. & Rittmann, B. E. (2016). Total Value of Phosphorus Recovery. Environmental science & technology, 50(13), 6606–6620.
DOI 10.1021/acs.est.6b01239
Méndez, A., Terradillos, M. & Gascó, G. (2013). Physicochemical and agronomic properties of biochar from sewage sludge pyrolysed at different temperatures. Journal of Analytical and Applied Pyrolysis, 102, 124–130.
DOI 10.1016/j.jaap.2013.03.006
Miller-Robbie, L., Ulrich, B. A., Ramey, D. F., Spencer, K. S., Herzog, S. P., Cath, T. Y., Stokes, J. R. & Higgins, C. P. (2015). Life cycle energy and greenhouse gas assessment of the co-production of biosolids and biochar for land application. Journal of Cleaner Production, 91, 118–127.
DOI 10.1016/j.jclepro.2014.12.050
Mills, N., Pearce, P., Farrow, J., Thorpe, R. B. & Kirkby, N. F. (2014). Environmental & economic life cycle assessment of current & future sewage sludge to energy technologies. Waste management, 34(1), 185–195.
DOI 10.1016/j.wasman.2013.08.024
Paneque, M., Knicker, H., Kern, J. & La Rosa, J. M. de (2019). Hydrothermal Carbonization and Pyrolysis of Sewage Sludge: Effects on Lolium perenne Germination and Growth. Agronomy, 9(7), 363.
DOI 10.3390/agronomy9070363
Paneque, M., La Rosa, J. M. de, Kern, J., Reza, M. T. & Knicker, H. (2017). Hydrothermal carbonization and pyrolysis of sewage sludges: What happen to carbon and nitrogen? Journal of Analytical and Applied Pyrolysis, 128, 314–323.
DOI 10.1016/j.jaap.2017.09.019
Paz-Ferreiro, J., Nieto, A., Méndez, A., Askeland, M. P. J. & Gascó, G. (2018). Biochar from Biosolids Pyrolysis: A Review. International journal of environmental research and public health, 15(5).
DOI 10.3390/ijerph15050956
Peccia, J. & Westerhoff, P. (2015). We Should Expect More out of Our Sewage Sludge. Environmental science & technology, 49(14), 8271–8276.
DOI 10.1021/acs.est.5b01931
PYREG. (2020). sewage sludge. Retrieved from https://www.pyreg.de/wp-content/uploads/2020_pyreg_brochure_sludge_EN.pdf
Salman, C. A., Schwede, S., Thorin, E., Li, H. & Yan, J. (2019). Identification of thermochemical pathways for the energy and nutrient recovery from digested sludge in wastewater treatment plants. Energy Procedia, 158, 1317–1322.
DOI 10.1016/j.egypro.2019.01.325
Samolada, M. C. & Zabaniotou, A. A. (2014). Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece. Waste management (New York, N.Y.), 34(2), 411–420.
DOI 10.1016/j.wasman.2013.11.003
Santín, C., Doerr, S. H., Merino, A., Bucheli, T. D., Bryant, R., Ascough, P., Gao, X. & Masiello, C. A. (2017). Carbon sequestration potential and physicochemical properties differ between wildfire charcoals and slow-pyrolysis biochars. Scientific reports, 7(1), 11233.
DOI 10.1038/s41598-017-10455-2
Schmidt, H.-P., Anca-Couce, A., Hagemann, N., Werner, C., Gerten, D., Lucht, W. & Kammann, C. (2018). Pyrogenic carbon capture and storage. GCB Bioenergy, 38(1), 215.
DOI 10.1111/gcbb.12553
Schoumans, O. F., Bouraoui, F., Kabbe, C., Oenema, O. & van Dijk, K. C. (2015). Phosphorus management in Europe in a changing world. Ambio, 44 Suppl 2, 92.
DOI 10.1007/s13280-014-0613-9
Skinner, S. J., Studer, L. J., Dixon, D. R., Hillis, P., Rees, C. A., Wall, R. C., Cavalida, R. G., Usher, S. P., Stickland, A. D. & Scales, P. J. (2015). Quantification of wastewater sludge dewatering. Water research, 82, 2–13.
DOI 10.1016/j.watres.2015.04.045
Song, X. D., Xue, X. Y., Chen, D. Z., He, P. J. & Dai, X. H. (2014). Application of biochar from sewage sludge to plant cultivation: Influence of pyrolysis temperature and biochar-to-soil ratio on yield and heavy metal accumulation. Chemosphere, 109, 213–220.
DOI 10.1016/j.chemosphere.2014.01.070
Teoh, S. K. & Li, L. Y. (2020). Feasibility of alternative sewage sludge treatment methods from a lifecycle assessment (LCA) perspective. Journal of Cleaner Production, 247, 119495.
DOI 10.1016/j.jclepro.2019.119495
Tomasi Morgano, M., Leibold, H., Richter, F., Stapf, D. & Seifert, H. (2018). Screw pyrolysis technology for sewage sludge treatment. Waste management (New York, N.Y.), 73, 487–495.
DOI 10.1016/j.wasman.2017.05.049
Twardowska, I., Schramm, K.-W. & Berg, K. (2004). Sewage sludge. In I. Twardowska (Hg.), Waste Management Series. Solid Waste: Assessment, Monitoring and Remediation (Bd. 4, S. 239–295). Elsevier.
DOI 10.1016/S0713-2743(04)80013-8
van Wesenbeeck, S., Prins, W., Ronsse, F. & Antal, M. J. (2014). Sewage Sludge Carbonization for Biochar Applications. Fate of Heavy Metals. Energy & Fuels, 28(8), 5318–5326.
DOI 10.1021/ef500875c
Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E. & Weidema, B. (2016). The ecoinvent database version 3 (part I): Overview and methodology. The International Journal of Life Cycle Assessment, 21(9), 1218–1230.
DOI 10.1007/s11367-016-1087-8
Yoshida, H., Christensen, T. H. & Scheutz, C. (2013). Life cycle assessment of sewage sludge management: a review. Waste management & research: the journal of the International Solid Wastes and Public Cleansing Association, ISWA, 31(11), 1083–1101.
DOI 10.1177/0734242X13504446
Yue, X., Arena, U., Chen, D., Lei, K. & Dai, X. (2019). Anaerobic digestion disposal of sewage sludge pyrolysis liquid in cow dung matrix and the enhancing effect of sewage sludge char. Journal of Cleaner Production, 235, 801–811.
DOI 10.1016/j.jclepro.2019.07.033
Zielińska, A. & Oleszczuk, P. (2016). Effect of pyrolysis temperatures on freely dissolved polycyclic aromatic hydrocarbon (PAH) concentrations in sewage sludge-derived biochars. Chemosphere, 153, 68–74.
DOI 10.1016/j.chemosphere.2016.02.118