Share
Released under CC BY-NC-ND
Copyright: © 2018 CISA Publisher
Aksoy, B., Cullinan, H., Webster, D., Gue, K., Sukumaran, S., Eden, M., & Sammons, N. (2011). Woody Biomass and Mill Waste Utilization Opportunities in Alabama: Transportation Cost Minimization, Optimum Facility Location, Economic Feasibility, and Impact, 30(4).
DOI 10.1002/ep.10501
Amundson, J., Sukumara, S., Seay, J., & Badurdeen, F. (2015). Decision Support Models for Integrated Design of Bioenergy Supply Chains. Handbook of Bioenergy.
DOI 10.1007/978-3-319-20092-7_7
Awudu, I., & Zhang, J. (2012). Uncertainties and sustainability concepts in biofuel supply chain management: A review. Renewable and Sustainable Energy Reviews, 16(2), 1359–1368.
DOI 10.1016/j.rser.2011.10.016
Ba, B. H., Prins, C., & Prodhon, C. (2016). Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective. Renewable Energy, 87, 977–989.
DOI 10.1016/j.renene.2015.07.045
Badger, P., Badger, S., Puettmann, M., Steele, P., & Cooper, J. (2011). Techno-Economic Analysis: Prelimiary Assessment of Pyrolysis Oil Production Costs and Material Energy Balance Associated with a Transportable Fast Pyrolysis System. BioResources, 6, 34–47.
Bamière, L. (2013). JOINT RESEARCH UNIT IN Stochastic viability of second generation biofuel chains : Micro-economic spatial modeling in France ∗, 33(0), 0–21.
Barisa, A., Romagnoli, F., Blumberga, A., & Blumberga, D. (2015). Future biodiesel policy designs and consumption patterns in Latvia : a system dynamics model. Journal of Cleaner Production, 88, 71–82.
DOI 10.1016/j.jclepro.2014.05.067
Batidzirai, B., Smeets, E. M. W., & Faaij, A. P. C. (2012). Bioenergy for Sustainable Development in Africa, 117–130.
DOI 10.1007/978-94-007-2181-4
Bento, J., Ferreira, D. S., & Horridge, M. (2014). Land Use Policy Ethanol expansion and indirect land use change in Brazil. Land Use Policy, 36, 595–604.
DOI 10.1016/j.landusepol.2013.10.015
Celli, G., Ghiani, E., Loddo, M., Pilo, F., & Pani, S. (2008). Optimal location of biogas and biomass generation plants. Proceedings of the Universities Power Engineering Conference.
DOI 10.1109/UPEC.2008.4651490
Cruz, J. B., Tan, R. R., Culaba, A. B., & Ballacillo, J. A. (2009). A dynamic input-output model for nascent bioenergy supply chains. Applied Energy.
DOI 10.1016/j.apenergy.2009.04.007
Dassanayake, G. D. M., & Kumar, A. (2012). Techno-economic assessment of triticale straw for power generation. Applied Energy, 98, 236–245.
DOI 10.1016/j.apenergy.2012.03.030
De Campos Cesar Leão RR, Hamacher S, O. (2010). Optimization of Biodiesel Supply Chains Based on Small Farmers: a case study in Brazil. Bioresource Technology.
De Meyer, A., Cattrysse, D., Rasinmäki, J., & Van Orshoven, J. (2014). Methods to optimise the design and management of biomass-for-bioenergy supply chains: A review. Renewable and Sustainable Energy Reviews, 31, 657–670. https://doi.org/10.1016/j.rser.2013.12.036
DOI 10.1016/j.rser.2013.12.036
Deenanath, E. D., Iyuke, S., & Rumbold, K. (2012). The bioethanol industry in sub-Saharan Africa: History, challenges, and prospects. Journal of Biomedicine and Biotechnology, 2012. https://doi.org/10.1155/2012/416491
DOI 10.1155/2012/416491
E4tech. (2009). Review of Technologies for Gasification of Biomass and Wastes Final report. Retrieved from www.e4tech.com/wp-content/uploads/2016/01/gasification2009.pdf%0A
Eason, J. P., & Cremaschi, S. (2014). A multi-objective superstructure optimization approach to biofeedstocks-to-biofuels systems design. Biomass and Bioenergy, 63, 64–75.
DOI 10.1016/j.biombioe.2014.02.010
Econergy. (2008). Mozambique Biofuels Assessment. Ministry of Energy of Mozambique, 511. Retrieved from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Mozambique+Biofuels+Assessment#0
Ericsson, K. Ã., & Nilsson, L. J. (2006). Assessment of the potential biomass supply in Europe using a resource-focused approach. Biomass and Bioenergy, 30, 1–15.
DOI 10.1016/j.biombioe.2005.09.001
Freppaz, D., Minciardi, R., Robba, M., & Rovatti, M. (2004). Optimizing forest biomass exploitation for energy supply at a regional level, 26, 15–25.
DOI 10.1016/S0961-9534 (03)00079-5
Friends of the earth. (2009). Jatropha: Wonder crop? Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.173.6527&rep=rep1&type=pdf
Frombo, F., Minciardi, R., Robba, M., Rosso, F., & Sacile, R. (2009). Planning woody biomass logistics for energy production : A strategic decision model. Biomass and Bioenergy, 33(3), 372–383.
DOI 10.1016/j.biombioe.2008.09.008
Gasparatos, A., Von Maltitz, G. P., Johnson, F. X., Lee, L., Mathai, M., Puppim De Oliveira, J. A., & Willis, K. J. (2015). Biofuels in sub-Sahara Africa: Drivers, impacts and priority policy areas. Renewable and Sustainable Energy Reviews, 45, 879–901.
DOI 10.1016/j.rser.2015.02.006
Gold, S., & Seuring, S. (2011). Supply chain and logistics issues of bio-energy production. Journal of Cleaner Production, 19(1), 32–42.
DOI 10.1016/j.jclepro.2010.08.009
Hadidi, L. A., & Omer, M. M. (2017). A financial feasibility model of gasification and anaerobic digestion waste-to-energy (WTE) plants in Saudi Arabia. Waste Management, 59, 90–101.
DOI 10.1016/j.wasman.2016.09.030
Herreras Martínez, S., Van Eijck, J., Pereira Da Cunha, M., Guilhoto, J. J. M., Walter, A., & Faaij, A. (2013). Analysis of socio-economic impacts of sustainable sugarcane-ethanol production by means of inter-regional Input-Output analysis: Demonstrated for Northeast Brazil. Renewable and Sustainable Energy Reviews.
DOI 10.1016/j.rser.2013.07.050
Hombach, L. E., Cambero, C., Sowlati, T., & Walther, G. (2016). Optimal design of supply chains for second generation biofuels incorporating European biofuel regulations. Journal of Cleaner Production, 133, 565–575.
DOI 10.1016/j.jclepro.2016.05.107
Iakovou, E., Karagiannidis, A., Vlachos, D., Toka, A., & Malamakis, A. (2010). Waste biomass-to-energy supply chain management : A critical synthesis. Waste Management, 30(10), 1860–1870.
DOI 10.1016/j.wasman.2010.02.030
IRENA. (2016). Innovation Outlook Advanced Liquid Biofuels, 132. Retrieved from http://www.irena.org/DocumentDownloads/Publications/IRENA_Innovation_Outlook_Advanced_Liquid_Biofuels_2016.pdf
Izquierdo, J., Minciardi, R., Montalvo, I., Robba, M., & Tavera, M. (2008). Particle Swarm Optimization for the biomass supply chain strategic planning. Proc. IEMSs 4th Biennial Meeting - Int. Congress on Environmental Modelling and Software: Integrating Sciences and Information Technology for Environmental Assessment and Decision Making, IEMSs 2008, 2, 1272–1280.
Ji, X., & Long, X. (2016). A review of the ecological and socioeconomic effects of biofuel and energy policy recommendations, 61, 41–52.
DOI 10.1016/j.rser.2016.03.026
Kanzian, C., Holzleitner, F., Stampfer, K., & Ashton, S. (2009). Regional Energy Wood Logistics – Optimizing Local Fuel Supply, 43(December 2008).
Kinoshita, T., Inoue, K., Iwao, K., Kagemoto, H., & Yamagata, Y. (2009). A spatial evaluation of forest biomass usage using GIS, 86, 1–8.
DOI 10.1016/j.apenergy.2008.03.017
Kunimitsu, Y., Takahashi, K., Furubayashi, T., & Nakata, T. (2013). Economic ripple effects of bioethanol production in ASEAN countries: Application of inter-regional input-output analysis. Japan Agricultural Research Quarterly, 47(3), 307–317.
DOI 10.6090/jarq.47.307
Leduc, S., Schwab, D., Dotzauer, E., Schmid, E., & Obersteiner, M. (2008). Optimal location of wood gasification plants for methanol production with heat recovery, (March), 1080–1091.
DOI 10.1002/er
Leduc, S., Starfelt, F., Dotzauer, E., Kindermann, G., Mccallum, I., Obersteiner, M., & Lundgren, J. (2010). Optimal location of lignocellulosic ethanol refineries with polygeneration in Sweden. EGY, 35(6), 2709–2716.
DOI 10.1016/j.energy.2009.07.018
Leimbach, M., Popp, A., Lotze-Campen, H., Bauer, N., Dietrich, J. P., & Klein, D. (2011). 10 Integrated assessment models–the interplay of climate change, agriculture and land use in a policy tool. Handbook on Climate Change and Agriculture.
Martinez-Hernandez, Elias; Leach, Matthew; Yang, A. (2015). Impact of Bioenergy Production on Ecosystem Dynamics and Services—A Case Study on U.K. Heathlands.
Marvuglia, A., Benetto, E., Rege, S., & Jury, C. (2013). Modelling approaches for consequential life-cycle assessment (C-LCA) of bioenergy: Critical review and proposed framework for biogas production. Renewable and Sustainable Energy Reviews.
DOI 10.1016/j.rser.2013.04.031
Mele, F. D., Kostin, A. M., Guillén-Gosálbez, G., & Jiménez, L. (2011). Multi-objective Model for More Sustainable Fuel Supply Chains. Industrial & Engineering Chemistry Research.
DOI 10.1021/ie101400g
Mol, R. M. De, Annevelink, E., & Dooren, H. J. C. Van. (2010). Optimization of the logistics of agricultural biogas plants, (December).
Musango, J. K., Brent, A. C., Amigun, B., Pretorius, L., & Hans, M. (2012). Technovation A system dynamics approach to technology sustainability assessment : The case of biodiesel developments in South Africa, 32, 639–651.
DOI 10.1016/j.technovation.2012.06.003
Musango, J. K., Brent, A. C., Amigun, B., Pretorius, L., & Müller, H. (2011). Technology sustainability assessment of biodiesel development in South Africa : A system dynamics approach. Energy, 36(12), 6922–6940.
DOI 10.1016/j.energy.2011.09.028
Nogueira, L. A. H., Antonio de Souza, L. G., Cortez, L. A. B., & Leal, M. R. L. V. (2017). Sustainable and Integrated Bioenergy Assessment for Latin America, Caribbean and Africa (SIByl-LACAf): The path from feasibility to acceptability. Renewable and Sustainable Energy Reviews, 76(March), 292–308.
DOI 10.1016/j.rser.2017.01.163
Panichelli, L., & Gnansounou, E. A. (2008). GIS-based approach for defining bioenergy facilities location : A case study in Northern Spain based on marginal delivery costs and resources competition between facilities, 32, 289–300.
DOI 10.1016/j.biombioe.2007.10.008
Pantaleo, A. M., & Shah, N. (2013). The Logistics of Bioenergy Routes for Heat and Power. Biofuels - Economy, Environment and Sustainability, 217–244.
DOI 10.5772/50478
Paolucci, N., Bezzo, F., & Tugnoli, A. (2016). A two-tier approach to the optimization of a biomass supply chain for pyrolysis processes. Biomass and Bioenergy, 84, 87–97.
DOI 10.1016/j.biombioe.2015.11.011
Papadopoulos, D. P., & Katsigiannis, P. A. (2002). Biomass energy surveying and techno-economic assessment of suitable CHP system installations, 22, 105–124.
Parikka, M. (2004). Global biomass fuel resources. Biomass and Bioenergy, 27, 613–620.
DOI 10.1016/j.biombioe.2003.07.005
Patel, M., Zhang, X., & Kumar, A. (2016). Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: A review. Renewable and Sustainable Energy Reviews, 53, 1486–1489.
DOI 10.1016/j.rser.2015.09.070
Pradhan, A., & Mbohwa, C. (2014). Development of biofuels in South Africa: Challenges and opportunities. Renewable and Sustainable Energy Reviews, 39, 1089–1100.
DOI 10.1016/j.rser.2014.07.131
Rentizelas, A. A., & Tatsiopoulos, I. P. (2010). Locating a bioenergy facility using a hybrid optimization method. International Journal of Production Economics, 123(1), 196–209.
DOI 10.1016/j.ijpe.2009.08.013
Shastri, Y., Hansen, A., Rodriguez, L., & Ting, K. (2013). Systems Informatics and Analysis of Biomass Feedstock Production. Pertanika Journal Science and Technology, 21(2), 273–279. Retrieved from http://www.pertanika.upm.edu.my/
Shastri, Y., Rodríguez, L., Hansen, A., & Ting, K. C. (2011). Agent-Based Analysis of Biomass Feedstock Production Dynamics. Bioenergy Research, 4(4), 258–275.
DOI 10.1007/s12155-011-9139-1
Shi, X., Elmore, A., Li, X., Gorence, N. J., Jin, H., Zhang, X., & Wang, F. (2008). Using spatial information technologies to select sites for biomass power plants : A case study in Guangdong, 32, 35–43.
DOI 10.1016/j.biombioe.2007.06.008
Skoulou, V., & Zabaniotou, A. Ã. (2007). Investigation of agricultural and animal wastes in Greece and their allocation to potential application for energy production $, 11, 1698–1719.
DOI 10.1016/j.rser.2005.12.011
Sobrino, F. H., Monroy, C. R., & Pérez, J. L. H. (2011). Biofuels and fossil fuels: Life Cycle Analysis (LCA) optimization through productive resources maximization. Renewable and Sustainable Energy Reviews.
DOI 10.1016/j.rser.2011.03.010
Souza, A., Watanabe, M. D. B., Cavalett, O., Ugaya, C. M. L., & Bonomi, A. (2016). Social life cycle assessment of first and second-generation ethanol production technologies in Brazil. The International Journal of Life Cycle Assessment.
DOI 10.1007/s11367-016-1112-y
Tembo, G., Epplin, F. M., Huhnke, R. L., Tembo, G., Epplin, F. M., & Huhnke, R. L. (2018). Integrative Investment Appraisal of a Lignocellulosic Biomass-to-Ethanol Industry Integrative Investment Appraisal of a Lignocellulosic Biomass-to-Ethanol Industry, 28(3), 611–633.
Timilsina, G. R., & Shrestha, A. (2010). Biofuels Markets, Targets and Impacts. Retrieved from https://hub.globalccsinstitute.com/sites/default/.../biofuels-markets-targets-impacts.pdf
Voivontas, D., Assimacopoulos, D., & Koukios, E. G. (2001). Assessment of biomass potential for power production : a GIS based method, 20, 101–112.
Von Maltitz, G. P., & Setzkorn, K. A. (2013). A typology of Southern African biofuel feedstock production projects. Biomass and Bioenergy, 59, 33–49.
DOI 10.1016/j.biombioe.2012.11.024
You, F., Graziano, D. J., & Snyder, S. W. (2012). Optimal Design of Sustainable Cellulosic Biofuel Supply Chains: Multiobjective Optimization Coupled with Life Cycle Assessment and Input – Output Analysis. AIChE Journal.
DOI 10.1002/aic.12637
Zamboni, A., Shah, N., Bezzo, F., & others. (2009). Spatially explicit static model for the strategic design of future bioethanol production systems. 1. Cost minimization. Energy & Fuels.
Zhan, F. B., Chen, X., Noon, C. E., & Wu, G. (2005). A GIS-enabled comparison of fixed and discriminatory pricing strategies for potential switchgrass-to-ethanol conversion facilities in Alabama, 28, 295–306.
DOI 10.1016/j.biombioe.2004.06.006