The inherent variability of some environmental analytical methods hampers the circular economy of materials

Pierre Hennebert, Anne-Françoise Stoffel, Mathieu Hubner, Daniel Fortmann, Patricia Merdy, Giovanni Beggio

1. Supplementary Information

1.1 Part 1 Examples of skewed populations

Weight of objects to be reused in a civic amenity site (FR)

Citizens of the Pays d'Aix-en-Provence are invited to donate and freely reuse objects in a citizen waste recycling center called "donnerie" on the municipal waste recycling center of Meyreuil. For 5 months of 2021, the weight of the items or lots of items taken away was recorded. The distribution is shown in Figure SI 7 and the related Table (original data).

Figure SI 7: SI Distribution of populations – weight of objects that are reused at Civic Amenity Site (France). Red line: normal distribution with the same mean and standard deviation, clearly not fitting the data, with calculated negative values (these latter not shown)

Parameter	n	Minimum	Median	Mean	Maximum	CV	Normality
Mass (kg)	1242	0.03	3.3	7.4	100	1.54	No

Plastics prepared for solid recovered fuel (IT)

The mass and volume (projected horizontal area times width) of individual particles of plastics < 50 mm sorted to become a solid recovered fuel were measured to assess the form factor of this material for more precise sampling

Source: Pivato A, Beggio G, Hennebert P, Mensi C, Sisti M, Maggi L. 2022. Refining the calculation of the mass of solid waste samples: tentative estimation of the shape factor based on a large number of measurements of particles dimensions. SUM 2022 6th Symposium on circular economy and urban mining. Capri, Italy, 18-20 May 2022.)

Parameter	n	Minimum	Median	Mean	Maximum	CV	Normality
Volume (cm ³)	261	0.00	1.93	11.6	150.8	2.21	No
Mass (g)	261	0.010	1.000	2.99	71.00	2.05	No
Density (g / cm ³)	261	0.0211	0.440	0.656	4.080	0.92	No

Granulometry and chemical composition of marine sediments (FR)

From the French maritime ports monitoring network (REPOM) piloted by IFREMER and two sediment characterization and processing projects (PROPSED and SEDIMARD), Ineris has compiled a database

of marine sediments (27,538 data for 818 samples, over a period from 1996 to 2008). Only 3 parameters out of 22 (particle size, TOC, TKN, 8 heavy metals, TPH, PAH, PCB, TBT) are normally distributed (n = 300 to 800). All CVs are > 0.50. Different distributions are shown in Figure SI 9. The same distribution patters were observed for fluvial sediments (not shown).

- Source: Padox J-M, Hennebert P. 2010. Qualité chimique des sédiments marins en France : Synthèse des bases de données disponibles. Rapport d'étude INERIS-DRC-10-105335-11618A. 12/08/2010. https://www.ineris.fr/fr/qualite-chimique-des-sediments-marins-en-france-synthese-des-bases-de-donnees-disponibles
- Padox J-M, Hennebert P. 2010. Qualité chimique des sédiments fluviaux en France : Synthèse des bases de données disponibles. Rapport d'étude INERIS-DRC-10-105335-04971A. 03/06/2010. 101 p. https://www.ineris.fr/sites/ineris.fr/files/contribution/Documents/r-10-04971a-action22.pdf

Figure SI 9: SI Distribution of populations – Total As, Cu, Zn and PCB 52 in marine sediments (France).

Parameter (mg/kg)	n	n ≤ LOQ (%)	Minimum	Median	Mean	Maximum	CVpopulation	Normal	Log-normal
As	791	0.25	0.09	13.0	13.85	196	0.666	Yes	No
Cu	817	0.73	2.00	41.3	85.2	2 651	1.88	No	Yes
Zn	813	-	1.54	150	219	3 493	1.137	No	No
PCB 52	107	70.1	1.00E-05	0.010	0.015	0.260	1.48	No	No

Other illustrated examples of skewed population are bromine in plastic scraps of waste of electrical and electronic equipment (WEEE) (Hennebert and Beggio 2021) printed circuit boards, fly ash, solid recovered fuel from municipal solid waste and tires (Beggio and Hennebert 2022, supplementary information).

Processed waste (fly ashes and bottom ashes)

a) <u>Chemical composition of municipal solid waste incinerator bottom ash (MSWI) fly ash (DK)</u>

A population of fly ash is presented in the validation data of Danish standard DS 3007 Horizontal sampling. Eight composite samples have been analysed for 26 parameters. The individual concentrations are not published in the validation data of the standard (and hence the distributions can not be presented), but well the mean concentration and their CV (sampling + analysis).

Figure SI 11: SI Distribution of populations – Total concentration of 26 parameters in 8 samples of MSWI fly ash of one incinerator (validation data of DS 3007) (Denmark). NPOC = non purgeable organic carbon.

According to their $CV \ge 0.5$, non-purgeable organic carbon, mercury and iron are probably not normally distributed in the 8 composite samples. Hg is volatile and metallic iron is not crucible with classical laboratory equipment from the laboratory sample to the test portion. The other parameters with $CV_{population} \le 0.20$ are probably normally distributed: no large values that increase the standard deviation are present.

b) Shape of fine fractions of municipal solid waste incinerator bottom ash (MSWI BA) (IT)

For sampling question, the shape of individual fine particles of MSWI BA (sample from Italy) has been individually analysed by an automated 3D imaging granulometer (Courtesy of Dr Thibault de Garidel-Thoron, CNRD, CEREGE Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement, Aix-en-Provence, France). Some results of the ratio of 2D projected area of one particle by 2D calculated circle that includes that particle are presented in Figure SI 10:

Figure SI 10: SI Distribution of populations – Ratio area/enclosing circle area of particles of different size in bottom ashes fine fractions (Italy).

Area/Enclosing circle area	n	Minimum	Median	Mean	Maximum	CV _{population}	Normality
100-160 μm	1160	0.181	0.532	0.527	0.823	0.239	Yes
160-200 μm	1006	0.094	0.520	0.521	0.844	0.243	Yes
200-250 μm	1469	0.050	0.520	0.515	0.856	0.257	Yes
250-500 μm	772	0.127	0.510	0.500	0.795	0.245	Yes

It can be suggested from these two cases that processed waste are more homogeneous and probably more frequently normal that unprocessed waste.

1.2 Part 2 The steps of representative sampling and analyses of waste

Figure SI 12: SI The steps from heterogeneous populations to reliable and reproducible characteristics

The total variance is the addition of the variance of each step.

This paper is dealing with the last step: Robust analyses (extraction and quantification) of homogeneous test portions.

1.3 Part 3 Reduction of variability by pretreatment of laboratory sample up to the test portion

Distribution of lead concentration in test portions from a same composite sample from a polluted site before and after pre-treatment is presented in Figure SI 13 (recalculated from Lamé et al. 2005). Before pretreatment, one test portion has a concentration of 125 000 mg Pb/kg.

Figure SI 13: SI From heterogeneous sample to representative sample (at the scale of the test portion)

Variable	n	Minimum	Maximum	Mean	SD	CV	Normality (4 tests)
Non-pretreated Composite	37	1750	125000	7743	20124	2.60	No (4/4)
Pretreated Composite	91	4750	9250	6832	935	0.14	Yes (4/4)

The pretreatment homogenises the material at the test portion scale and dissipates the variability. Repetitions are normally distributed in a narrow range of concentration: $CV_{analysis}$ is reduced from 2.60 to 0.14.

Source: Lamé F, Honders T, Derksen G, Gadella M. 2005. Validated sampling strategy for assessing contaminants in soil stockpiles. Environmental Pollution 134 (2005) 5–11.

1.4 Part 4 Variability of normal (gaussian) distribution

The Figure SI 14 shows the spreading of a normal distribution with increasing CV from 0.20 to 0.50, illustrating that a limit to the variability must be set for analytical methods. The part of the values that are included in the very large interval [zero – two times the mean] is indicated: 100% for CV = 0.20, 95.4% for CV = 0.50. For CV = 0.60, 1.00 and 1.50, the parts of the values that lie within [0 x; 2 x] are 90.4%, 68.3% and 49.5%, respectively (not shown).

For the accelerated percolation test prEN 16637-3 (see main document), the elements have a mean CV = 0.57, meaning that if they were normally distributed, 92.1% of the values would lie within [0 x; 2 x]. For the organics, the mean CV = 0.79 and only 79.4% of the values would lie within [0 x; 2 x].

Figure SI 14: SI The normal distribution with mean = 1 and coefficients of variation CV = 0.2, 0.4 and 0.5 (blue line: probability density; red line: cumulated frequency)

1.5 Part 5 Literature evidence of the presence of a colloidal fraction in different leaching tests (literature data)

Table SI3: SI Literature data on colloidal fraction of different leaching tests (not only EN 12457 series)

Literature data on colloidal fraction of elements and PAHs and PCBs of leaching tests (EN 12457 series and others)

Ref n°1: Agitation mode (horizontal shaking, vertical shaking, rotation, speed) influences the 0.45 μ m- and the 0.10 μ m-filtered leachate concentration Ref n°2 to 4: Of 134 waste leachates, there is always at least one element that is colloidal (0.45 μ m-cc > 1.5 x 0.003 μ m-cc), up to 100% of the 0.45 μ m-cc Ref n°5, 6: The colloidal fraction of PAHs and PCBs are respectively >20 times and > 100 times higher than the soluble fraction in 5 sediments

Ref n°7 to 10: The colloidal organic carbon (called dissolved org	rbon – DOM in LeachXS) is a major vector of elements, especially at pH > 10
---	---

N	Matrix	Leaching test	Citation on colloidal fraction in leachate	Example	Reference; yellow: members of WG1 Leaching tests of CEN TC 444
1	Contaminate d soils	Demineralize d water L/S 10 l/kg Different agitation methods and time, Settling 15 min, Centrifuged 1700 g (3000 rpm) for 20 min, filtration 0.45 µm or 0.10 µm, analysis	However, agitating certain types of soil and then passing the solution through a membrane filter with 0.45-mm pores yields filtrates that have been colored by the colloidal particles. These colloids might affect the results of the inorganic substances obtained in the batch tests The As and Pb concentrations in the leachates of some types of soil were	(A) Soil A-Pb (A) S	(Yasutaka et al., 2017) Yasutaka, T., Imoto, Y., Kurosawa, A., Someya, M., Higashino, K., Kalbe, U., Sakanakura, H., 2017. Effects of colloidal particles on the results and reproducibility of batch leaching tests for heavy metal-contaminated soil. Soils Found. 57, 861– 871. https://doi.org/10.1016/j.sandf.2017.08.014

N	Matrix	Leaching test	Citation on colloidal fraction in	Example	Reference; yellow: members of WG1 Leaching tests of CEN TC 444
			clearly affected by the amount of colloidal particles with a diameter of 0.10–0.45 mm and by the agitation method used. This was probably because As and Pb were present mainly in the particulate form in the leachate that had been passed through a membrane filter with 0.45-mm pores. This is not the case for every type of soil. The results of batch leaching tests showed that not only dissolved but also colloidal forms with a diameter of 0.10–0.45 mm might be included and that the existence of colloidal particles in the leachate decreases the batch leaching test reproducibility.	(D) Soil A-Se $0.06 - 0.45 \ \mu \text{m MF}$ 0.10 \ \mathcal{m MF} 0.02 - 0.04	
			Batch tests are used as compliance tests in several countries, and the results are compared with	Fig. 3. Pb, Se and As concentrations in the extracts of soils A, B, and C when different agitation methods and membrane filter (MF) pore diameters were used. x-axis labels H, V and R mean horizontal shaking,	

Ν	Matrix	Leaching test	Citation on colloidal fraction in	Example	Reference; yellow: members of WG1 Leaching tests of CEN TC 444
			leachate threshold values to	vertical shaking and rotation respectively	
			assess the	and the numbers below them indicate the	
			environmental impacts	sneed of the shaking /rotation in rnm	
			The results of batch	speed of the shaking/rotation in rpm.	
			tests used in this way		
			need to be very		
			reproducible and		
			reliable for all types of		
			soil The results of this		
			study and other studies		
			indicate that the		
			reproducibility of a		
			batch test will be		
			affected by the amount		
			of colloidal particles in		
			the filtrate and that the		
			amount of colloidal		
			particles present will be		
			controlled not only by		
			the soil type, but also by		
			the agitation method		
			(i.e., agitation time,		
			frequency, method and		
			direction).		
			The results of batch		
			leaching tests showed		
			that not only dissolved		
			but also colloidal forms		
			with a diameter of		
			0.10–0.45 mm might be		
			included and that the		
			existence of colloidal		

N	Matrix	Leaching test	Citation on colloidal fraction in leachate	Example	Reference; yellow: members of WG1 Leaching tests of CEN TC 444
			particles in the leachate		
			decreases the batch		
			leaching test		
			reproducibility.		
			reproducibility. Note 1: The difference between the 0.45μm- filtered fraction and the 0.10 μm-filtered fraction is a colloidal fraction Note 2: - Agitation mode: H horizontal, V vertical, R		
			- Energy: 50.		
			100, 200, 200, 5		
			indicates the		
			speed of		
			shaking/rotatio		
			n in rpm.		

N	Matrix	Leaching test	Citation on colloidal fraction in leachate	Example	Reference; yellow: members of WG1 Leaching tests of CEN TC 444
	leachates MSWI APC residue, fly ash, bottom ash, industrial APC residue, bottom ash, steel slag, metallic dust, bauxite residue, waste packaging, compost, sediments, soils, landfill leachate	EN 12457-2, settling 15 min, cascade microfiltratio n 0.45 μm and ultrafiltration 3 KDa.	Mn, As, Co, Pb, Sn, Zn had always a colloidal form (MF concentration/UF concentration > 1.5) and total organic carbon (TOC), Fe, P, Ba, Cr, Cu, Ni are partly colloidal for more than half of the samples. Nearly all the micro- pollutants (As, Ba, Co, Cr, Cu, Mo, Ni, Pb, Sb, Sn, V and Zn) were found at least once in colloidal form greater than 100 µg/L. In particular, the colloidal forms of Zn were always by far more concentrated than its dissolved form All the waste had at least one element detected as colloidal. The solid waste leachates contained significant amount of colloids different in elemental composition from natural ones Standardized cross- filtration method could	<pre>if if i</pre>	Hennebert, P., Avellan, A., Yan, J., Aguerre-Chariol, O., 2013. Experimental evidence of colloids and nanoparticles presence from 25 waste leachates. Waste Manag. 33. https://doi.org/10.1016/j.wasman.2013.04.014

Ν	Matrix	Leaching test	Citation on colloidal fraction in leachate	Example	Reference; yellow: members of WG1 Leaching tests of CEN TC 444
			be amended for the presence of colloids in waste leachates. Note: the colloidal fraction is represented as the difference between the "microfiltrate" (MF) and the "ultrafiltrate" (UF) concentrations, on log scale		
3, 4	MSWI BA, Sunscreens, Paints, Construction and Demolition waste, Landfill leachates	EN 12457-2, settling 15 min, cascade microfiltratio n 0.45 μm and ultrafiltration 3 KDa.	Paints, concrete and particularly cosmetics proved to be sources of ENPs. Colloidal forms of elements or ENPs were found in leachate obtained from paint (Si), in cosmetics leachates (Al, Si, Ti and Zn), and in one demolition concrete (Ti). In non-hazardous landfill leachates, all elements have a colloidal fraction (Figure).Note: laboratory leachates of solid landfill leachate sludge		(Hennebert et al., 2017) Hennebert, P., Merdy, P., 2017. Mineral Colloids and Nanoparticles in Municipal Solid Waste Incinerator Bottom Ashes and Sunscreens, in: Sardinia 2017 – 16th International Waste Management and Landfill Symposium. Hennebert P, Anderson A, Merdy P. 2017. Mineral nanoparticles in waste: potential sources, occurrence in some engineered nanomaterials leachates, municipal sewage sludges and municipal landfill sludges. J Biotechnol Biomater 2017, 7:2. 12 p.

N	Matrix	Leaching test	Citation on colloidal fraction in leachate	Example	Reference; yellow: members of WG1 Leaching tests of CEN TC 444
			(produced by filtration or decantation in ponds), or liquid leachates of landfill (in decantation ponds)	Colloidal fraction of elements in 10 landfill leachates	
				Max fraction = maximum colloidal fraction observed per element among 10 landfill leachates Mean fraction = mean colloidal fraction observed per element among 10 landfill leachates	

N	Matrix	Leaching test	Citation on colloidal fraction in leachate	Example	Reference; yellow: members of WG1 Leaching tests of CEN TC 444
5,6	5 marine and fluvial sediments		Percolated PAHs are correlated with DOC and humic acids, and PCBs with neutral hydrophobic carbon. Note: the colloidal fraction is represented as the difference between the "percolable" and the "soluble" fraction, on log scale.	PAH Marseille 1.E+04 1.E+03 1.E+02 1.E+00 1.E+01 1.E+01 1.E+01 1.E+00 1.E+02 1.E+02 1.E+02 1.E+02 1.E+03 F Ph An Fl Py Chr BaAN BaPy	(Charrasse et al. 2013), (Hennebert et al. 2014) Charrasse B, Tixier C, Hennebert P, Doumenq P. 2013. Polyethylene passive samplers to determine sediment–pore water distribution coefficients of persistent organic pollutants in five heavily contaminated dredged sediments. Sci Total Environ (2013), http://dx.doi.org/10.1016/j.scitotenv.2013.10.12 5 Hennebert P, Charrasse B, Doumenq P, Tixier C. 2014. Biodegradable, labile, leachable, dissolved, colloidal and calculated fractions of hydrophobic organic contaminants of five sediments. 4th International Symposium on Sediment
				PCB Marseille 1.E+04 1.E+04 1.E+04 1.E+04 1.E+00 1.E+01 1.E+01 1.E+01 1.E+01 1.E+01 1.E+01 1.E+01 1.E+01 1.E+01 1.E+01 1.E+02 1.E+02 1.E+02 1.E+02 1.E+03 1.E+04 PCB S2 PCB 101 PCB 118 PCB 153 PCB 138	International Symposium on Sediment Management (I2SM). Ferrara (Italy). 17/09/2014. 9 p.

Ν	Matrix	Leaching test	Citation on colloidal fraction in	Example	Reference; yellow: members of WG1 Leaching tests of CEN TC 444
7	Construction debris, concrete pavement	pH dependent batch leaching test CEN/TS 14429	leachateThe importance of complexation to humic substances was also shown in samples derived from construction debris.Note: the colloidal fraction is represented as "DOC bound" in the figure on log scale	Sample A Cu 1.E-03 1.E-04 1.E-05 1.E-06 1.E-07 1.E-	(López Meza et al., 2010) López Meza, S., Kalbe, U., Berger, W., Simon, F.G., 2010. Effect of contact time on the release of contaminants from granular waste materials during column leaching experiments. Waste Manag. 30, 565–571. https://doi.org/10.1016/j.wasman.2009.11.022

1.6 Part 6 Experimental evidence of colloids and nanoparticles in leachates and effect on parameter concentrations

Material and method

Number and size of particles

An experiment conducted at the University of Toulon (France) assessed the influence of the centrifugation step on the number and the size of particles passing through the filtration membrane (Table 1). The number and size of particles were assessed by a Nanoparticle Track Analyzer immediately after filtration of the different (fraction) volumes.

Sample	Dredged canal contaminated waste sediment (north of France), air dried	Experiment by Patricia Merdy, University of Toulon (FR)
Leaching	EN 12457-2: sieving < 4 mm, 24 h rotar	y tumbler, L/S= 10 L deionised water
	Decantation-Centrifugation-Filtration (C)	Decantation- Filtration (NC)
Solid/liquid separation	Annex E of EN 12457	
	1. Decantation 15 min	1. Decantation 15 min
	2. Centrifugation 30 min 2000 g	2 no centrifugation
	3. Front Filtration 0.45 μ m membrane vacuum	3. Front Filtration 0.45 μ m membrane vacuum

Table SI 1: Experimental design for the number and size of particles

Turbidity and concentration of elements

An experiment conducted at Eurofins lab in Saverne (France) is described in Table 2, to assess the influence of the centrifugation step on the leachates' turbidity and concentration for the EU landfill acceptance parameters.

Twenty-seven samples were used in different batches and their leachate analysed for 20 parameters:

- Turbidity and physico-chemical parameters (electrochemistry and titration analyzers)
- dry residue (gravimetry)
- anions (TOC-meter, spectrophotometry)
- inorganic elements (12 heavy metals by ICPMS)

The experimental design is presented in Table 2.

Twenty parameters for landfill acceptance of waste were measured. The values lower than the limit of quantification for centrifugated or non-centrifugated fraction or both were <u>NOT</u> used, as done for the assessment of validation trials.

Samples (27)				
	Waste (4), Sludge (2), Sediment (6), Soil (15)			
Leaching	EN 12457-2: sieving < 4 mm, 24 h rotary tumbler 10 rpm, L/S= 10 L deionised water, filtration 0.45 μm membrane			
	Test 1	Test 2		
Solid/liquid	Decantation-Centrifugation-Filtration (C)	Decantation- Filtration (NC)		
separation	Annex E of EN 12457			
	1. Decantation 15 min	1. Decantation 15 min		
	2. Centrifugation 4min 3500 g /	2. no centrifugation		

Table SI 2: Experimental design and result

3. Turbidity measurement (12 samples)	3. Turbidity measurement (12 samples)	
4. Front Filtration 0.45 μm membrane (automated high-	4. Front Filtration 0.45 μm membrane (automated high-	
pressure filter) of 300 ml	pressure filter) of 300 ml	
5. Turbidity measurement (12 samples)	5. Turbidity measurement (12 samples)	
6. Parameters and elements analysis (27 samples)	6. Parameters and elements analysis (sampoles)	

It must be noted that 300 ml, so not all the volume of the leachate has been filtered. The volume for the analyses is about 150 ml.

Results

Size and number of colloids and (nano)particles in a leachate of sediment

The results are presented in Table 3 and Figure 15.

	Decantation-Centrifugation-Filtration (Annex E of EN 12457) (C)	Decantation- Filtration	
Solid/liquid separation		(NC)	C / NC
Filter cake (g) after 100 ml	0.002	2.128	0.001
Number of particles (n/ml)			
0 - 50 ml	1.1E+08	4.2E+07	2.5
50 - 100 ml	1.9E+08	3.8E+07	4.8
Size of particles (D ₅₀ nm)			
0 - 50 ml	157	141	1.1
50 - 100 ml	143	121	1.2
Size of particles (D ₉₀ nm)			
0 - 50 ml	243	207	1.2
50 - 100 ml	234	212	1.1

Table SI 3: Particles in leachates with or without centrifugation

The results show that:

- There is practically no filter cake after preliminary centrifugation (2 mg vs 2 g);
- All particles have a size < 0.45 μ m, indicating that there are no leaks in the filter membranes;
- There are more and larger particles with centrifugation;
- The difference in number of particles increases as the filtered volume increases.

Conclusion:

- There are particles in leachates filtered < 0.45 μ m
- The centrifugation prior to filtration counter-intuitively increases the number and the size of particles in the leachate

<u>Turbidity</u>

Turbidity before filtration

The turbidity after decantation and centrifugation is available for 12 samples and is 15% of the turbidity after decantation (without centrifugation).

Figure SI 16: Turbidity after decantation for 12 samples

Turbidity after filtration

The turbidity after decantation, centrifugation and filtration is available for 12 samples and is in mean equal to the turbidity after decantation and filtration (lower for some samples and higher for others).

Conclusion on turbidity:

- as the centrifugation has no influence of the turbidity after filtration, the turbidity (after decantation) cannot be used as an indicator of the need of centrifugation of the leachate;
- the turbidity (after decantation) could be an indicator of the thickness of the filtration cake (that acts as a second filter) but that thickness (after 300 ml) has not been measured.

-

Parameters and elements

With 287 pairs of data (where C and/or NC are > LOQ), the distribution of the ratio [concentration C (centrifugation + filtration) / concentration NC (no centrifugation + filtration)] and its statistical analysis are presented in Figure 5 and Table 4.

Figure SI 18: The mean centrifugated concentration is higher than the mean non-centrifugated concentration (the ratio (C/NC) is significantly higher than 1) (pair of data C/NC) (p = 0.008)

Table SI 4: Statistical analysis of the centrifugated/non centrifugated (C/NC) ratios of concentrationT-test for one sample (bilateral).

Variable	Observations (paired samples)	Minimum	Maximum	Mean	Standard deviation
C/NC	287	0.150	11.098	1.134	0.850

Difference	0.134
t observed	2.673
t (Critical value)	1.968
DF	286
p-value (bilateral)	0.008
alpha	0.05

The 95% confidence interval of the mean C/NC ratio is [1.035 ; 1.233].

This set of 287 paired data from 27 samples confirms what was found by the number of particles. A leachate that is centrifuged and then filtered is counter-intuitively 13% <u>MORE</u> concentrated than a leachate that is only filtered.

Parameters with high concentration

For high concentrations, the effect of centrifugation depends on the parameters or elements. When the element is present in the leachate in significant concentration (the concentration is > 1 mg/kg for TDS, TOC, SO4, F, Zn, Ni, Phenol Index, Cu, Ba, Zn, Mo, As, as observed here, and the concentration is > LOQ for Pb, Cr and Cd), the centrifugation prior to filtration increases or decrease the value or concentration of the parameters or elements (results with 12 samples). Four types of effect can be distinguished (Table 5, Figure 6). The effect of centrifugation cannot be predicted.

Table SI 5: Effect of centrifugation on ratios of parameters (data of 12 samples)

Parameters	Concentration (with centrifugation) > Concentration (without centrifugation) C > NC	C < NC	C < or > NC (depending on samples)	C = NC
Physico-	-	EC (2 samples)	-	рH
chemical		IDS (1 sample)		•
Organics	TOC (2 camples)	Phenol Index (1	_	
Organics	ioc (z samples)	sample)	-	
Anions	SO4 (2 samples)	F (2 samples)	-	Cl
	As (1 sample)			
	Cd (1 sample)		Ba (2 samples)	Hg
Heavy metals	Mo (1 sample)	Cu (1 sample)	Cr (2 samples)	Sb
	Pb (4 samples)		Ni (4 samples)	Se
	Zn (2 samples)			

Figure SI 19: The effect of centrifugation for the highest concentrations depends on the parameters

Conclusion

The build-up of a filter cake generates an uncontrolled additional filtration. Preliminary centrifugation avoids the build-up of that filter cake. With the accumulation of a filter cake (without a centrifugation step), fewer particles are present in the leachate and they are smaller (all < 0.45 μ m, reduction of 63% in number, and reduction of 13% in size). As these particles contain elements (shown in 100 waste leachates, Hennebert et al. 2013, 2017), it is expected that the concentration of the elements in the leachate will be lower without centrifugation.

In a set of 27 samples and 20 parameters, with 287 paired values higher than the limit of quantification,

- the turbidity (after decantation) cannot be used as an indicator of the need of centrifugation of the leachate;
- the concentrations in the centrifugated leachates are in mean 13% higher;
- the effect of centrifugation on concentration of one element for one sample with "high" concentration is not predictable.

Therefore, the variability and reduction of concentration created by the filter cake should be fixed. More reproducible (intra- and interlaboratory) leach test results could be obtained with a fixed and well defined solid / liquid separation (in accordance with Annex E of the EN 12457 series, without any additive).

References

- Hennebert P, Avellan A, Yan J, Aguerre-Chariol O. 2013. Experimental evidence of colloids and nanoparticles presence from 25 waste leachates. Waste Management 33 (2013) 1870–1881.
- Hennebert P, Anderson A, Merdy P. 2017. Mineral nanoparticles in waste: potential sources, occurrence in some engineered nanomaterials leachates, municipal sewage sludges and municipal landfill sludges. J Biotechnol Biomater 2017, 7:2. 12 p.

ISO 2016. Document ISO/TC 147/SC 2 N 1567. Date: 2016-02-08. Guidance document on designing an interlaboratory trial for validation of analytical methods within ISO/TC 147/SC 2

1.7 Part 7: Characterisation of analyses by their intensity of extraction

Extraction	Partial	Mild	Total
		Partial -	
		Available - Bio-	Pseudo total -
Extracted fraction	Soluble	available	Total
		Agriculture -	Environment
		Biology - Risk	(long-term) -
Domain	Environment (short-term)	assessment	Geology
	Notational and Influences		Finely ground <
Grain size	Minimal modification	Ground	150 μm
Mass of test portion (typical)	> 100 g	100 - 10 g	< 10 g
		Diluted	<u></u>
Extraction liquid	Deionised water	extractants	Strong acids or
		solutions	
Agitation operat		up to 100 C	> 100 C
Agitation energy	LOW	Medium	1 h to some
Time	24 h - 1 week	1 h	minutes
line	24 II - 1 WEEK	111	Particles are
Solid/liquid separation			dissolved
procedure	Critical	Critical	Decantation
Presence of particles, and		Presence,	
colloids in the filtrate	Presence, Critical	Critical	No presence
Part of total content	<1%	<1 - 50% ?	>90%
			Total dissolution
		pH-dependence	(HF, Alkaline
Tests	Leaching tests (EN 12457)	test (EN 14997)	attack)
			Pseudo-total
		(Bio)available	dissolution
	Percolation tests (EN 14405)	fraction tests	(Aqua Regia)
	Ecotox tests (EN ISO 11348-3,	Extractible	Total organics:
	EN ISO 8692, ISO 18187, ISO	fraction (CN-,	PAH, PCB,
	17512-1)	Phenols)	PCDD/F
Intra-laboratory variability			
CVr and inter-laboratory	Ujah	Modium	Low
Penorted mean CVr and CVP	nign	wedium	LOW
(validation data of standards)	0 17 / 0 36	0 20 / 0 25	0 10 / 0 24
	0.17 / 0.30	(ecotox tests no	(total elements
	(leaching tests)	extraction)	and organics)
Extraction liquid Temperature Agitation energy Time Solid/liquid separation procedure Presence of particles, and colloids in the filtrate Part of total content Tests Tests	Deionised water 20°C Low 24 h - 1 week Critical Presence, Critical Presence, Critical (leaching tests (EN 12457) Percolation tests (EN 12457) Percolation tests (EN 12457) High O.17 / 0.36 (leaching tests)	extractants solutions up to 100°C Medium 1 h Critical Presence, Critical <1 - 50% ? pH-dependence test (EN 14997) (Bio)available fraction tests Extractible fraction tests Extractible fraction (CN-, Phenols) Medium	strong actos of bases > 100°C High, Thermal 1 h to some minutes Particles are dissolved, Decantation No presence >90% Total dissolution (HF, Alkaline attack) Pseudo-total dissolution (Aqua Regia) Total organics: PAH, PCB, PCDD/F Low 0.10 / 0.24 (total elements and organics)

Table SI 6 : SI Characterisation of analyses with partial extraction, mild extraction, total extraction