an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU


  • Antonio Randazzo - Department of Earth Sciences , University of Florence , Italy - IGG - Institute of Geosciences and Earth Resources, CNR - National Research Council of Italy , Italy
  • Adele Folino - DiSPeA - Department of Pure and Applied Sciences, Section ChEM - Chemistry, Environment, and Materials , University of Urbino “Carlo Bo” , Italy
  • Franco Tassi - Department of Earth Sciences , University of Florence , Italy - IGG - Institute of Geosciences and Earth Resources, CNR - National Research Council of Italy , Italy
  • Fabio Tatàno - DiSPeA - Department of Pure and Applied Sciences, Section ChEM - Chemistry, Environment, and Materials , University of Urbino "Carlo Bo" , Italy
  • Sandro de Rosa - ASET S.p.A. public multi-utility group , Italy
  • Alma Gambioli - ASET S.p.A. public multi-utility group , Italy

DOI 10.31025/2611-4135/2022.15188

Released under CC BY-NC-ND

Copyright: © 2021 CISA Publisher

Editorial History

  • Received: 16 Dec 2021
  • Revised: 27 Mar 2022
  • Accepted: 28 Apr 2022
  • Available online: 22 Jun 2022


The chemical composition of volatile organic compounds (VOCs) in landfill gas from municipal waste (MW) landfills primarily depends on the type of degrading waste. To provide first insights into the relationship between VOC chemistry (in landfill gas) and specific waste components, a lab-scale experiment on anaerobic digestion (AD) of green waste (GW) was carried out. The composition of the released C4+ VOCs was semi-quantitatively determined and indirectly compared to that generally expected for the overall MW landfill gas. The generated biogas from degrading GW during AD time showed up to 29 different VOCs, mainly including terpenes, followed by alkanes, alkenes, cyclics, aromatics, and halogenated compounds. O- and S-substituted compounds were sporadically detected. Overall, speciation and total concentration of VOCs fluctuated over AD time, likely due to changes in microbial populations and metabolism, as well as substrate depletion, during the AD evolution. As expected, VOC speciation in the GW biogas was lower than that of the typical MW landfill gas, since the latter is generated by a large variety of organic and synthetic waste components following different sequential degradation processes. These results highlighted that, when disposed of at MW landfill sites, the specific GW component may (i) potentially concur to the overall odour charge and toxic effects of MW landfill gas and (ii) detrimentally impact the energy exploitation of MW landfill gas by releasing terpenes, aromatics, and halogenated compounds.



Acaia, C., Ragazzi, M., 1991. Chemical, physical, and biological properties of WWTP sludge. In: Canziani, R. (Ed.), Treatment and Disposal of Sludge, Monograph series, Volume 5, Istituto per l’Ambiente Publisher, Milan, Italy, pp. 11-35 (in Italian)

Aharoni, A., Giri, A.P., Verstappen, F.W.A., Bertea, C.M., Sevenier, R., Sun, Z., Jongsma, M.A., Schwab, W., Bouwmeester, H.J., 2004. Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species. Plant Cell 16, 3110–3131.
DOI 10.1105/tpc.104.023895

Allen, M.R., Braithwaite, A., Hills, C.C., 1997. Trace organic compounds in landfill gas at seven U.K. waste disposal sites. Environ. Sci. Technol. 31, 1054–1061.
DOI 10.1021/es9605634

Alvarez-Cohen, L., McCarty, P.L., 1991. Effects of toxicity, aeration, and reductant supply on trichloroethylene transformation by a mixed methanotrophic culture. Appl. Environ. Microbiol. 57, 228–235.
DOI 10.1128/aem.57.1.228-235.1991

Alvarez-Cohen, L., Speitel, G.E., 2001. Kinetics of aerobic cometabolism of chlorinated solvents. Biodegradation 12, 105–126.
DOI 10.1023/A:1012075322466

Andrae, J.W., McInerney, F.A., Tibby, J., Henderson, A.C.G., Hall, P.A., Marshall, J.C., McGregor, G.B., Barr, C., Greenway, M., 2019. Variation in leaf wax n-alkane characteristics with climate in the broad-leaved paperbark (Melaleuca quinquenervia). Org. Geochem. 130, 33–42.
DOI 10.1016/j.orggeochem.2019.02.004

Angelidaki, I., Sanders, W., 2004. Assessment of the anaerobic biodegradability of macropollutants. Rev. Environ. Sci. Bio/Technol. 3, 117–129.
DOI 10.1007/s11157-004-2502-3

Arrhenius, K., Engelbrektsson, J., 2016. Development of analytical methods to gain insight into the role of terpenes in biogas plants. J. Anal. Bioanal. Tech. 7, 1–6.
DOI 10.4172/2155-9872.1000324

Arthur, C.L., Pawliszyn, J., 1990. Solid Phase Microextraction with Thermal Desorption Using Fused Silica Optical Fibers. Anal. Chem.
DOI 10.1021/ac00218a019

Beylot, A., Villeneuve, J., Bellenfant, G., 2013. Life Cycle Assessment of landfill biogas management: Sensitivity to diffuse and combustion air emissions. Waste Manag. 33, 401–411.
DOI 10.1016/j.wasman.2012.08.017

Boccarossa, M., Di Addario, M., Folino, A., Tatàno, F., 2021. Scenarios of bioenergy recovery from organic fraction of residual municipal waste in the Marche Region (Italy). Sustainability 13, 11462.
DOI 10.3390/su132011462

Bogner, J., Lagerkvist, A., 1997. Organic carbon cycling in landfills: model for a continuum approach. In Christensen, T.H., Cossu, R., Stegmann, R. (Eds.), Proceedings of Sardinia 97, Sixth International Landfill Symposium, Volume I, CISA Publisher, Cagliari, Italy, pp. 45–56

Bowman, J.M., Braxton, M.S., Churchill, M.A., Hellie, J.D., Starrett, S.J., Causby, G.Y., Ellis, D.J., Ensley, S.D., Maness, S.J., Meyer, C.D., Sellers, J.R., Hua, Y., Woosley, R.S., Butcher, D.J., 1997. Extraction method for the isolation of terpenes from plant tissue and subsequent determination by gas chromatography. Microchem. J. 56, 10–18.
DOI 10.1006/mchj.1996.1422

Bragança, I., Sánchez-Soberón, F., Pantuzza, G.F., Alves, A., Ratola, N., 2020. Impurities in biogas: Analytical strategies, occurrence, effects and removal technologies. Biomass and Bioenergy 143.
DOI 10.1016/j.biombioe.2020.105878

Brown, D., Shi, J., Li, Y., 2012. Comparison of solid-state to liquid anaerobic digestion of lignocellulosic feedstocks for biogas production. Bioresour. Technol. 124, 379–386.
DOI 10.1016/j.biortech.2012.08.051

Campuzano, R., González-Martínez, S., 2016. Characteristics of the organic fraction of municipal solid waste and methane production: A review. Waste Manag. 54, 3–12.
DOI 10.1016/j.wasman.2016.05.016

Cao, Q., Zhang, W., Lian, T., Wang, S., Dong, H., 2021. Short chain carboxylic acids production and dynamicity of microbial communities from co-digestion of swine manure and corn silage. Bioresour. Technol. 320, 124400.
DOI 10.1016/j.biortech.2020.124400

Capaccioni, B., Martini, M., Mangani, F., 1995. Light hydrocarbons in hydrothermal and magmatic fumaroles: hints of catalytic and thermal reactions. Bull. Volcanol. 56, 593–600.
DOI 10.1007/BF00301464

Cape, J.N., 2003. Effects of airborne volatile organic compounds on plants. Environ. Pollut. 122, 145–157.
DOI 10.1016/S0269-7491(02)00273-7

Carchesio, M., Tatàno, F., Lancellotti, I., Taurino, R., Colombo, E., Barbieri, L., 2014. Comparison of biomethane production and digestate characterization for selected agricultural substrates in Italy. Environ. Technol. 35 (17), 2212-2226.
DOI 10.1080/09593330.2014.898701

Carchesio, M., Di Addario, M., Tatàno, F., de Rosa, S., Gambioli, A., 2020. Evaluation of the biochemical methane potential of residual organic fraction and mechanically-biologically treated organic outputs intended for landfilling. Waste Management 113, 20–31.
DOI 10.1016/j.wasman.2020.05.021

Chen, D.M.C., Bodirsky, B.L., Krueger, T., Mishra, A., Popp, A., 2020. The world’s growing municipal solid waste: trends and impacts. Environ. Res. Lett. 15, 074021.
DOI 10.1088/1748-9326/ab8659

Chen, M., Zhu, X., Zhang, Y., Du, Z., Chen, X., Kong, X., Sun, W., Chen, C., 2020. Drought stress modify cuticle of tender tea leaf and mature leaf for transpiration barrier enhancement through common and distinct modes. Sci. Rep. 10, 1–12.
DOI 10.1038/s41598-020-63683-4

Chiriac, R., De Araujos Morais, J., Carre, J., Bayard, R., Chovelon, J.M., Gourdon, R., 2011. Study of the VOC emissions from a municipal solid waste storage pilot-scale cell: Comparison with biogases from municipal waste landfill site. Waste Manag. 31, 2294–2301.
DOI 10.1016/j.wasman.2011.06.009

Christensen, T.H., Manfredi, S., Knox, K., 2010. Landfilling: reactor landfills. In: Christensen, T.H. (Ed.), Solid Waste Technology & Management, Volume 2, John Wiley & Sons Ltd., Chichester, UK, pp. 772–787

Courtois, E.A., Paine, C.E.T., Blandinieres, P.A., Stien, D., Bessiere, J.M., Houel, E., Baraloto, C., Chave, J., 2009. Diversity of the volatile organic compounds emitted by 55 species of tropical trees: A survey in French Guiana. J. Chem. Ecol. 35, 1349–1362.
DOI 10.1007/s10886-009-9718-1

Courtois, E.A., Baraloto, C., Timothy Paine, C.E., Petronelli, P., Blandinieres, P.A., Stien, D., Höuel, E., Bessire, J.M., Chave, J., 2012. Differences in volatile terpene composition between the bark and leaves of tropical tree species. Phytochemistry 82, 81–88.
DOI 10.1016/j.phytochem.2012.07.003

de Arespacochaga, N., Valderrama, C., Mesa, C., Bouchy, L., Cortina, J.L., 2014. Biogas deep clean-up based on adsorption technologies for Solid Oxide Fuel Cell applications. Chem. Eng. J. 255, 593–603.
DOI 10.1016/j.cej.2014.06.072

Dincer, F., Odabasi, M., Muezzinoglu, A., 2006. Chemical characterization of odorous gases at a landfill site by gas chromatography-mass spectrometry. J. Chromatogr. A 1122, 222–229.
DOI 10.1016/j.chroma.2006.04.075

Duan, Z., Lu, W., Li, D., Wang, H., 2014. Temporal variation of trace compound emission on the working surface of a landfill in Beijing, China. Atmos. Environ. 88, 230–238.
DOI 10.1016/j.atmosenv.2014.01.051

Duan, Z., Scheutz, C., Kjeldsen, P., 2021. Trace gas emissions from municipal solid waste landfills: A review. Waste Manag. 119, 39–62.
DOI 10.1016/j.wasman.2020.09.015

Eglinton, G., Hamilton, R.J., 1967. Leaf epicuticular waxes : The waxy outer surfaces of most plants display a wide diversity of fine structure and chemical constituents. Science. 156, 1322–1335. https://doi.org10.1126/science.156.3780.1322

Fitamo, T., Treu, L., Boldrin, A., Sartori, C., Angelidaki, I., Scheutz, C., 2017. Microbial population dynamics in urban organic waste anaerobic co-digestion with mixed sludge during a change in feedstock composition and different hydraulic retention times. Water Res. 118, 261–271.
DOI 10.1016/j.watres.2017.04.012

Gallego, E., Roca, F.J., Perales, J.F., Sánchez, G., Esplugas, P., 2012. Characterization and determination of the odorous charge in the indoor air of a waste treatment facility through the evaluation of volatile organic compounds (VOCs) using TD-GC/MS. Waste Manag. 32, 2469–2481.
DOI 10.1016/j.wasman.2012.07.010

Gershenzon, J., Dudareva, N., 2007. The function of terpene natural products in the natural world. Nat. Chem. Biol. 3, 408–414.
DOI 10.1038/nchembio.2007.5

Giraudet, S., Boulinguiez, B., Le Cloirec, P., 2014. Adsorption and electrothermal desorption of volatile organic compounds and siloxanes onto an activated carbon fiber cloth for biogas purification. Energy and Fuels 28, 3924–3932.
DOI 10.1021/ef500600b

Gonzalez, M., Miglioranza, K.S.B., Aizpún De Moreno, J.E., Moreno, V.J., 2003. Occurrence and distribution of organochlorine pesticides (OCPS) in tomato (Lycopersicon esculentum) crops from organic production. J. Agric. Food Chem. 51, 1353–1359.
DOI 10.1021/jf025892w

IRSA (Italian Water Research Institute), 1984. Analitical Methods for Sludge: Technological Parameters. IRSA Book Series No. 64, CNR Publisher, Rome, Italy (in Italian)

Kaza, S., Yao, L., Bhada-Tata, P., Van Woerden, F., 2018. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. Urban Development Series, World Bank, Washington, DC, USA. doi:10.1596/978-1-4648-1329-0

Keymeulen, R., Voutetaki, A., Van Langenhove, H., 1995. Determination of volatile chlorinated hydrocarbons in plant leaves by gas chromatography-mass spectrometry. J. Chromatogr. A 699, 223–229.
DOI 10.1016/0021-9673(95)00171-I

Komilis, D.P., Ham, R.K., Park, J.K., 2004. Emission of volatile organic compounds during composting of municipal solid wastes. Water Res. 38, 1707–1714.
DOI 10.1016/j.watres.2003.12.039

Kopaczyk, J.M., Warguła, J., Jelonek, T., 2020. The variability of terpenes in conifers under developmental and environmental stimuli. Environ. Exp. Bot. 180, 104197.
DOI 10.1016/j.envexpbot.2020.104197

Kumar, A., Alaimo, C.P., Horowitz, R., Mitloehner, F.M., Kleeman, M.J., Green, P.G., 2011. Volatile organic compound emissions from green waste composting: Characterization and ozone formation. Atmos. Environ. 45, 1841–1848.
DOI 10.1016/j.atmosenv.2011.01.014

Langsdorf, A., Volkmar, M., Holtmann, D., Ulber, R., 2021. Material utilization of green waste: a review on potential valorization methods. Bioresour. Bioprocess. 8, 19.
DOI 10.1186/s40643-021-00367-5

Li, W., Zhang, G., Zhang, Z., Xu, G., 2014. Anaerobic digestion of yard waste with hydrothermal pretreatment. Appl. Biochem. Biotechnol. 172, 2670–2681.
DOI 10.1007/s12010-014-0724-6

Li, Y., Chen, Y., Wu, J., 2019. Enhancement of methane production in anaerobic digestion process: A review. Appl. Energy 240, 120–137.
DOI 10.1016/j.apenergy.2019.01.243

Liew, L.N., Shi, J., Li, Y., 2012. Methane production from solid-state anaerobic digestion of lignocellulosic biomass. Biomass and Bioenergy 46, 125–132.
DOI 10.1016/j.biombioe.2012.09.014

Liu, Y., Lu, W., Li, D., Guo, H., Caicedo, L., Wang, C., Xu, S., Wang, H., 2015. Estimation of volatile compounds emission rates from the working face of a large anaerobic landfill in China using a wind tunnel system. Atmos. Environ. 111, 213–221.
DOI 10.1016/j.atmosenv.2015.04.017

Long, Y., Zhang, S., Fang, Y., Du, Y., Liu, W., Fang, C., Shen, D., 2017. Dimethyl sulfide emission behavior from landfill site with air and water control. Biodegradation 28, 327–335.
DOI 10.1007/s10532-017-9799-4

Londong, J., 2006. Abwasserbehandlung. Weiterbildendes Studium Wasser und Umwelt, Bauhaus-Universität Weimar in fachlicher Kooperation mit der DWA (Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V.), Weimar, Hennef, Germany (in German)

Lubbers, R.J.M., Dilokpimol, A., Visser, J., Mäkelä, M.R., Hildén, K.S., de Vries, R.P., 2019. A comparison between the homocyclic aromatic metabolic pathways from plant-derived compounds by bacteria and fungi. Biotechnol. Adv. 37, 107396.
DOI 10.1016/j.biotechadv.2019.05.002

Mao, C., Wang, Y., Wang, X., Ren, G., Yuan, L., Feng, Y., 2019. Correlations between microbial community and C:N:P stoichiometry during the anaerobic digestion process. Energy 174, 687–695.
DOI 10.1016/

Maulini-Duran, C., Puyuelo, B., Artola, A., Font, X., Sánchez, A., Gea, T., 2014. VOC emissions from the composting of the organic fraction of municipal solid waste using standard and advanced aeration strategies. J. Chem. Technol. Biotechnol. 89, 579–586.
DOI 10.1002/jctb.4160

Mewalal, R., Rai, D.K., Kainer, D., Chen, F., Külheim, C., Peter, G.F., Tuskan, G.A., 2017. Plant-Derived Terpenes: A Feedstock for Specialty Biofuels. Trends Biotechnol. 35, 227–240.
DOI 10.1016/j.tibtech.2016.08.003

Mitra, P., Das, S., Barik, A., 2020. Leaf waxes from Lathyrus sativus: short-range attractant and stimulant for nymph laying in a viviparous insect. Chemoecology 30, 117–129.
DOI 10.1007/s00049-020-00303-7

Mooney, A., Ward, P.G., O’Connor, K.E., 2006. Microbial degradation of styrene: Biochemistry, molecular genetics, and perspectives for biotechnological applications. Appl. Microbiol. Biotechnol. 72, 1–10.
DOI 10.1007/s00253-006-0443-1

Mosaddegh, M.H., Jafarian, A., Ghasemi, A., Mosaddegh, A., 2014. Phytoremediation of benzene, toluene, ethylbenzene and xylene contaminated air by D. deremensis and O. microdasys plants. J. Environ. Heal. Sci. Eng. 12, 1–7.
DOI 10.1186/2052-336X-12-39

Muchlinski, A., Ibdah, M., Ellison, S., Yahyaa, M., Nawade, B., Laliberte, S., Senalik, D., Simon, P., Whitehead, S.R., Tholl, D., 2020. Diversity and function of terpene synthases in the production of carrot aroma and flavor compounds. Sci. Rep. 10, 1–14.
DOI 10.1038/s41598-020-66866-1

Muenmee, S., Chiemchaisri, W., Chiemchaisri, C., 2016. Enhancement of biodegradation of plastic wastes via methane oxidation in semi-aerobic landfill. Int. Biodeterior. Biodegrad. 113, 244–255.
DOI 10.1016/j.ibiod.2016.03.016

Mustafa, M.F., Liu, Y., Duan, Z., Guo, H., Xu, S., Wang, H., Lu, W., 2017. Volatile compounds emission and health risk assessment during composting of organic fraction of municipal solid waste. J. Hazard. Mater. 327, 35–43.
DOI 10.1016/j.jhazmat.2016.11.046

Nair, A.T., Senthilnathan, J., Nagendra, S.M.S., 2019. Emerging perspectives on VOC emissions from landfill sites: Impact on tropospheric chemistry and local air quality. Process Saf. Environ. Prot. 121, 143–154.
DOI 10.1016/j.psep.2018.10.026

Nie, E., Zheng, G., Shao, Z., Yang, J., Chen, T., 2018. Emission characteristics and health risk assessment of volatile organic compounds produced during municipal solid waste composting. Waste Manag. 79, 188–195.
DOI 10.1016/j.wasman.2018.07.024

NIST (National Institute of Standards and Technology), 2005. Mass Spectral Library (NIST/EPA/NIH), Gaithersburg, USA

Ormeño, E., Baldy, V., Ballini, C., Fernandez, C., 2008. Production and diversity of volatile terpenes from plants on calcareous and siliceous soils: Effect of soil nutrients. J. Chem. Ecol. 34, 1219–1229.
DOI 10.1007/s10886-008-9515-2

Pan, X., Zhao, L., Li, C., Angelidaki, I., Lv, N., Ning, J., Cai, G., Zhu, G., 2021. Deep insights into the network of acetate metabolism in anaerobic digestion: focusing on syntrophic acetate oxidation and homoacetogenesis. Water Res. 190, 116774.
DOI 10.1016/j.watres.2020.116774

Papadias, D.D., Ahmed, S., Kumar, R., 2012. Fuel quality issues with biogas energy - An economic analysis for a stationary fuel cell system. Energy 44, 257–277.
DOI 10.1016/

Parker, T., Dottridge, J., Kelly, S., 2002. Investigation of the composition and emissions of trace components in landfill gas. Environ. Agency, Bristol, UK 146

Piechota, G., 2021. Multi-step biogas quality improving by adsorptive packed column system as application to biomethane upgrading. J. Environ. Chem. Eng. 9, 105944.
DOI 10.1016/j.jece.2021.105944

Randazzo, A., Asensio-Ramos, M., Melián, G. V., Venturi, S., Padrón, E., Hernández, P.A., Pérez, N.M., Tassi, F., 2020. Volatile organic compounds (VOCs) in solid waste landfill cover soil: Chemical and isotopic composition vs. degradation processes. Sci. Total Environ. 726, 138326.
DOI 10.1016/j.scitotenv.2020.138326

Raposo, F., De La Rubia, M.A., Fernández-Cegrí, V., Borja, R., 2011. Anaerobic digestion of solid organic substrates in batch mode: An overview relating to methane yields and experimental procedures. Renew. Sustain. Energy Rev. 16, 861–877.
DOI 10.1016/j.rser.2011.09.008

Rasi, S., Läntelä, J., Rintala, J., 2011. Trace compounds affecting biogas energy utilisation - A review. Energy Convers. Manag. 52, 3369–3375.
DOI 10.1016/j.enconman.2011.07.005

Reyes-Torres, M., Oviedo-Ocaña, E.R., Dominguez, I., Komilis, D., Sánchez, A., 2018. A systematic review on the composting of green waste: Feedstock quality and optimization strategies. Waste Manag. 77, 486–499.
DOI 10.1016/j.wasman.2018.04.037

Sadowska-Rociek, A., Kurdziel, M., Szczepaniec-Ciȩciak, E., Riesenmey, C., Vaillant, H., Batton-Hubert, M., Piejko, K., 2009. Analysis of odorous compounds at municipal landfill sites. Waste Manag. Res. 27, 966–975.
DOI 10.1177/0734242X09334616

Salvador, V.H., Lima, R.B., dos Santos, W.D., Soares, A.R., Böhm, P.A.F., Marchiosi, R., Ferrarese, M. de L.L., Ferrarese-Filho, O., 2013. Cinnamic Acid Increases Lignin Production and Inhibits Soybean Root Growth. PLoS One 8, 1–10.
DOI 10.1371/journal.pone.0069105

Saral, A., Demir, S., Yildiz, Ş., 2009. Assessment of odorous VOCs released from a main MSW landfill site in Istanbul-Turkey via a modelling approach. J. Hazard. Mater. 168, 338–345.
DOI 10.1016/j.jhazmat.2009.02.043

Sevimoĝlu, O., Tansel, B., 2013. Effect of persistent trace compounds in landfill gas on engine performance during energy recovery: A case study. Waste Manag. 33, 74–80.
DOI 10.1016/j.wasman.2012.08.016

Sharma, P., Kothari, S.L., Rathore, M.S., Gour, V.S., 2018. Properties, variations, roles, and potential applications of epicuticular wax: A review. Turk. J. Botany 42, 135–149.
DOI 10.3906/bot-1702-25

Shin, H.C., Park, J.W., Park, K., Song, H.C., 2002. Removal characteristics of trace compounds of landfill gas by activated carbon adsorption. Environ. Pollut. 119, 227–236.
DOI 10.1016/S0269-7491(01)00331-1

Staiger, S., Seufert, P., Arand, K., Burghardt, M., Popp, C., Riederer, M., 2019. The permeation barrier of plant cuticles: uptake of active ingredients is limited by very long-chain aliphatic rather than cyclic wax compounds. Pest Manag. Sci. 75, 3405–3412.
DOI 10.1002/ps.5589

Staley, B.F., Xu, F., Cowie, S.J., Barlaz, M.A., Hater, G.R., 2006. Release of trace organic compounds during the decomposition of municipal solid waste components. Environ. Sci. Technol. 40, 5984–5991.
DOI 10.1021/es060786m

Strandberg, B., Hites, R.A., 2001. Concentration of organochlorine pesticides in wine corks. Chemosphere 44, 729–735.
DOI 10.1016/S0045-6535(00)00262-9

Takuwa, Y., Matsumoto, T., Oshita, K., Takaoka, M., Morisawa, S., Takeda, N., 2009. Characterization of trace constituents in landfill gas and a comparison of sites in Asia. J. Mater. Cycles Waste Manag. 11, 305–311.
DOI 10.1007/s10163-009-0257-1

Tassi, F., Montegrossi, G., Vaselli, O., Liccioli, C., Moretti, S., Nisi, B., 2009. Degradation of C2-C15 volatile organic compounds in a landfill cover soil. Sci. Total Environ. 407, 4513–4525.
DOI 10.1016/j.scitotenv.2009.04.022

Tatàno, F., Pagliaro, G., Di Giovanni, P., Floriani, E., Mangani, F., 2015. Biowaste home composting: experimental process monitoring and quality control. Waste Manage. 38, 72–85.
DOI 10.1016/j.wasman.2014.12.011

Taylor, B.F., Kiene, R.P., 1989. Microbial Metabolism of Dimethyl Sulfide 202–221.
DOI 10.1021/bk-1989-0393.ch013

USEPA (US Environmental Protection Agency), 2020. Advancing Sustainable Materials Management: 2018 Tables and Figures. Assessing Trends in Materials Generation and Management in the United States, December, Washington, DC, USA. Available at

Verma, R.S., Padalia, R.C., Singh, V.R., Goswami, P., Chauhan, A., Bhukya, B., 2017. Natural benzaldehyde from Prunus persica (L.) Batsch. Int. J. Food Prop. 20, 1259–1263.
DOI 10.1080/10942912.2017.1338728

Waliszewski, S.M., Carvajal, O., Infanzon, R.M., Trujillo, P., Aguirre, A.A., Maxwell, M., 2004. Levels of organochlorine pesticides in soils and rye plant tissues in a field study. J. Agric. Food Chem. 52, 7045–7050.
DOI 10.1021/jf040250p

Wang, X., Ting, W., 2008. Release of isoprene and monoterpenes during the aerobic decomposition of orange wastes from laboratory incubation Experiments. Environ. Sci. Technol. 42, 3265–3270.
DOI 10.1021/es702999j

Wenjing, L., Zhenhan, D., Dong, L., Jimenez, L.M.C., Yanjun, L., Hanwen, G., Hongtao, W., 2015. Characterization of odor emission on the working face of landfill and establishing of odorous compounds index. Waste Manag. 42, 74–81.
DOI 10.1016/j.wasman.2015.04.030

Wu, C., Shu, M., Liu, X., Sang, Y., Cai, H., Qu, C., Liu, J., 2020. Characterization of the volatile compounds emitted from municipal solid waste and identification of the key volatile pollutants. Waste Manag. 103, 314–322.
DOI 10.1016/j.wasman.2019.12.043

Wu, T., Wang, X., Li, D., Yi, Z., 2010. Emission of volatile organic sulfur compounds (VOSCs) during aerobic decomposition of food wastes. Atmos. Environ. 44, 5065–5071.
DOI 10.1016/j.atmosenv.2010.09.019

Wu, T., Wang, X., 2015. Emission of oxygenated volatile organic compounds (OVOCs) during the aerobic decomposition of orange wastes. J. Environ. Sci. (China) 33, 69–77.
DOI 10.1016/j.jes.2015.01.006

Zamri, M.F.M.A., Hasmady, S., Akhiar, A., Ideris, F., Shamsuddin, A.H., Mofijur, M., Fattah, I.M.R., Mahlia, T.M.I., 2021. A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste. Renew. Sustain. Energy Rev. 137, 110637.
DOI 10.1016/j.rser.2020.110637

Zhang, L., Sun, X., 2016. Improving green waste composting by addition of sugarcane bagasse and exhausted grape marc. Bioresour. Technol. 218, 335–343.
DOI 10.1016/j.biortech.2016.06.097

Zhang, Y., Liang, Z., Tang, C., Liao, W., Yu, Y., Li, G., Yang, Y., An, T., 2020. Malodorous gases production from food wastes decomposition by indigenous microorganisms. Sci. Total Environ. 717, 137175.
DOI 10.1016/j.scitotenv.2020.137175

Zhao, Y., Lu, W., Wang, H., 2015. Volatile trace compounds released from municipal solid waste at the transfer stage: Evaluation of environmental impacts and odour pollution. J. Hazard. Mater. 300, 695–701.
DOI 10.1016/j.jhazmat.2015.07.081

Zheng, G., Liu, J., Shao, Z., Chen, T., 2020. Emission characteristics and health risk assessment of VOCs from a food waste anaerobic digestion plant: A case study of Suzhou, China. Environ. Pollut. 257, 113546.
DOI 10.1016/j.envpol.2019.113546

Zimmermann, W., 1990. Degradation of lignin by bacteria. J. Biotechnol. 13, 119–130.
DOI 10.1016/0168-1656(90)90098-V