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ABSTRACT
The application of Geographical Information Systems (GIS) enhanced modelling 
techniques in biomass and solid waste supply chain problems is hinged on a com-
mon denominator for both systems: the spatial distribution of supply points and vari-
ability of resource quantities. Since the sustainability of bioenergy or waste-to-en-
ergy projects around these resources will be affected significantly by the cost of 
supplying them, it is important to optimize decisions around facility location, size 
and transport routes. GIS is an important tool that can be used to capture the spa-
tial and temporal dynamics of the biomass and waste. It can then be used alone or 
integrated with other software tools, for strategic and tactical level optimization of 
biomass and solid waste supply chains. In as much as a lot of progress has been 
made globally in research and application of GIS enhanced modelling techniques 
in biomass and solid waste supply chains, developing nations have trailed behind. 
This explains why spatial and temporal waste or biomass statistics are not readily 
available in these areas. This paper reviews recent developments in the application 
of GIS in biomass and solid waste supply chain models, with the ultimate objective 
of identifying the gaps and opportunities that exist. It is especially biased towards 
the use of the biomass and waste in renewable or waste to energy schemes- a fast 
growing field within the green economy.

1. INTRODUCTION
1.1 General background: Waste to energy and bio-
energy systems

Waste to energy (WtE) and biomass to bioenergy (BtB) 
are both significant highlights within global green economy 
schemes, representing the use of ‘renewable’ waste and bi-
omass (Kennes, et al., 2016; Vlachos et al., 2008). Recent 
green initiatives are hinged on the fact that these two re-
sources can be an invaluable substitution for fossil based 
fuels both in the power and fuels industries since both can 
be converted into fuels, heat and power using various tech-
nologies (Batidzirai et al., 2012; Nkosi & Muzenda, 2014; 
Pantaleo & Shah, 2013; Pilusa & Muzenda, 2014; Sobrino 
et al., 2011). Biomass can be thermally or biochemically 
converted into renewable biofuels, while selected frac-
tions of Municipal Solid Waste (MSW) like tyres, rubber 
and plastics can also be thermo chemically converted into 
heavy oils and fuels (Pilusa & Muzenda, 2014; Pradhan & 
Mbohwa, 2014). Due to the rising awareness and advocacy 
for a green economy, both fields have registered a signifi-

cant growth in the past decade. The global Waste to Energy 
(WtE) market was valued at US$25.32 billion in 2013, hav-
ing grown by 5.5% from 2012. It has then been projected 
to grow by a Compound Annual Growth Rate (CAGR) of 
over 5.5% from 2016, reaching a value of US$40 billion by 
2023 (World Energy Council, 2016). The BtB industry is also 
growing with the follow segmented CAGR projections: 44% 
for advanced biofuels from 2017-2021; 9.6% for all biofuels 
(2013-2019); 7% and 8.1% for biomass power generation 
and biodiesel respectively in 2018 (Sapp, 2014a, 2014b, 
2017). The main, common drivers for both are the global 
lookout to increase Renewable energy sources (RES), rising 
environmental consciousness, the advent of circular econ-
omies, government policies and support through grants, 
tax credits, incentives and special loans (Sapp, 2017; World 
Energy Council, 2016). 

A significant fraction of the biomass available for energy 
exploitation is essentially waste- especially agricultural and 
forestry residues- which then form an intersection with sol-
id waste (SW) (Iakovou et al., 2010). In such WtE ventures, 
the green economy value is double pronged: comprising 



97G. Charis et al. / DETRITUS / Volume 06 - 2019 / pages 96-106

ameliorating the environmental problem of the waste and 
deriving useful energy products from it (Pilusa & Muzenda, 
2014). According to Gasparatos et al. (2015), the weight of 
each of these value propositions varies from developing to 
developed nations; with the latter according a significant 
weight to climatic and environmental issues, while the 
former are more interested in socio-economics (Gaspara-
tos et al., 2015). According to Maslow’s hierarchy, this is 
perfectly normal, since developing nations have to meet 
pressing subsistence needs before thriving for safety and 
environmental issues (Yawson et al., 2009). Indeed, the po-
tential socio-economic benefits for such WtE or bioenergy 
ventures can be significant, spanning increased economic 
development (more income and tax revenues), employment 
creation, increased national energy security, alternative & 
cleaner fuels and alleviation of energy poverty in remote/
rural communities (Ji & Long, 2016). In light of such poten-
tial benefits, optimized management and utilization of MSW 
and biomass could help developing nations derive more val-
ue from these abundant resources in them, tackling both 
socio-economic and ecological issues in significant ways. 

1.2 WtE and BtB supply chain dynamics
Due to the spatial distribution of supply points and var-

iability of quantities for both biomass and SW resources, 
one of the critical decisions to be made would be site loca-
tions and optimal transportation routes (Chalkias & Lasari-
di, 2009; Kinoshita et al., 2009; Shi et al., 2008). Beyond the 
common applications for both resources in renewable en-
ergy, an interesting fact to note is the similarity of the sup-
ply chain systems around the two feed stocks. A number of 
authors have concurred that the two major constraints that 
hamper widespread uptake and dissemination of WtE and 
bioenergy projects are cost (a function of technical com-
plexities, especially in the conversion technology) and the 
feedstock supply chain (SC) dynamics (Amundson et al., 
2015; Batidzirai et al., 2012; Iakovou et al., 2010; Vlachos 
et al., 2008). Even though the feed stocks can be cheap, 
as in the case of MSW, agriculture and forest residues, the 
total cost for the feedstock supply significantly contributes 
towards high production costs; ranging from 40-70% (IRE-
NA, 2016; Ji & Long, 2016). This is due to the low energy 
density of biomass and MSW, the spatial distribution of 
supply points and variability of resource quantities at those 
points compared to fossil fuels (Amundson et al., 2015; 
Iakovou et al., 2010). The sustainability of bioenergy or WtE 
projects around these resources is therefore affected sig-
nificantly by the cost of supplying them, making the optimi-
zation of supply chain factors like facility location, size and 
transport routes important considerations (Iakovou et al., 
2010). In waste management, the WtE facility can be a di-
rect replacement of landfills, where demographic patterns 
begin to influence the location of the site, or can be based 
on the landfills available.

1.3 Methodology 
This study examines the growing opportunity for GIS 

application in SW and biomass WtE supply chains for de-
veloping regions, keeping the trends in developed regions 
in perspective. Africa presents itself as an interesting focus 

case for developing nations by combining high population 
growth and MSW generation with slow technology (GIS) 
uptake and low biomass waste utilization (Abarca et el., 
2013; Nwosu & Pepple, 2016; Pradhan & Mbohwa, 2014). 
The specific countries in Africa were then picked based 
on availability of research reports around GIS applications 
for bio-energy or MSW waste and they should categorized 
among the developing countries (Fantom & Serajuddin, 
2016). A couple of successful applications from developed 
nations were also picked in order to draw out a parallels 
compared to developing regions. Using this criteria, a total 
of eight studies (four for each case) were carried out in de-
tail. References are made however, briefly to other relevant 
studies.

The main method used in obtaining data was a desktop 
survey using google search engines and mainly targeting 
peer reviewed scholarly articles. To stream line the search, 
phrases containing ‘GIS’ along with ‘biomass’, ‘bio-energy’ 
or ‘MSW waste’ were formulated. The study however, ex-
cludes solid sewage waste from both biomass and MSW 
wastes. The review timeframe is from 2001 to 2018, cap-
turing both historical and state-of-the art trends in the ap-
plication of GIS. 

2. GLOBAL VIEW OF THE APPLICATION OF 
SC OPTIMIZATION IN BIOMASS AND WTE 
VENTURES

The complexities associated with the design and plan-
ning of bioenergy and WtE SCs have emanated from the 
associated high costs of handling per unit energy, sea-
sonal and uncertain nature of feedstock supplies, varia-
bility of feedstock locations and other factors (Iakovou et 
al., 2010). These and other reasons have made it imper-
ative to optimize these SCs, with various objectives such 
as maximizing conversion throughput, maximizing social 
returns like employment, minimizing GHG emissions and 
minimizing costs. Despite an equally compelling case for 
research around feedstock supply chain dynamics and 
costs, most research has focused on the conversion tech-
nologies (Paolucci et al., 2016). There has, however, been a 
recent upsurge in research around bioenergy and WtE SCs, 
though the initial focus was the assessment of potential 
resource volumes, allocation of collection sites and loca-
tion of production facilities (Iakovou et al., 2010). In MSW 
management particularly, the initial focus was transport 
routes for waste and location of landfills rather than ener-
gy conversion facilities (Nwosu & Pepple, 2016). However, 
SC optimization has increasingly been covering a broader 
scope owing to recent advances in computational tools, 
subsequent improvements in mathematical models and 
the realization recent awakening to SC logistic issues as a 
major bottleneck in most bioenergy and WtE projects, (Ba 
et al., 2016; Hadidi & Omer, 2017; Pantaleo & Shah, 2013).
Still, more research is required to ascertain the viability of 
bioenergy and WtE projects through SC optimization. Such 
research outputs could contribute to a significant reduc-
tion in the cost of the integrated bioenergy system (Gold & 
Seuring, 2011; Hombach et al., 2016; Iakovou et al., 2010). 

SC optimization literature has generally concurred that 
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supply chain complexities have to be addressed at 3 de-
cision levels: strategic, tactical and operational (De Meyer 
et al., 2014; Iakovou et al., 2010), (Awudu & Zhang, 2012). 
These are defined in Table 1, along with the activities nor-
mally tagged along these levels.

A number of studies have looked into SC optimization 
at the different levels demonstrated in table 1. Most of the 
researches take a Multicriteria decision analysis (MCDA) 
approach based on many hierarchical attributes or objec-
tives, often conflicting, which are analyzed mathematically 
to obtain an optimal choice (De Meyer et al., 2014).

In principle, the entire supply chain comprises the pro-
duction, harvesting or collection of biomass or MSW; trans-
portation; pre-treatment; storage; subsequent conversion 
to bioenergy (heat, power or fuels) and supply to markets 
(Ba et al., 2016). Consequently, the other important fac-
tor in the SC optimization studies is the part of the supply 
chain they focus on, as shown in Figure 1. The upstream 
process includes the generation, pre-treatment and deliv-
ery of MSW or biomass in the appropriate form to the con-
version facility. The midstream SC covers the bioenergy or 
WtE conversion facility, while the downstream SC concerns 
the supply and distribution of the bio-product (heat, power 
or fuels) to the market (Ba et al., 2016).

Though there has been a push towards integrated SC 
optimization models that span all the stages and variables 
within the whole chain to maximize or minimize certain ob-
jectives, such models could be complex, requiring a mul-
ti-disciplinary approach (Amundson et al., 2015; Nogueira 
et al., 2017). The conventional practice therefore, has been 
to separately optimize the upstream and midstream parts, 
since they jointly represent the largest fraction of costs in-
curred in the whole SC (Amundson et al., 2015; Batidzirai et 
al., 2012; Iakovou et al., 2010; Vlachos et al., 2008). The up-
stream SC optimization is mostly an operations research 
problem, while the midstream is largely process engineer-
ing and associated unit operations.

3. THE ROLE OF GIS MODELLING IN SC OP-
TIMIZATION
3.1 GIS and its functionalities in the context of SW 
and biomass supply chains

Recent technological advances in computational tools 
have presented GIS as an innovative and versatile tool in 

both SW management and biomass SCs (Hadidi & Omer, 
2017; Sufiyan et al., 2015). Consequently, there has been 
a significant increase in the use of desktop GIS in the last 
few decades, encouraged by the expansion of PC capa-
bilities and reduction in cost of using them. GIS software 
vendors have, since, been redesigning their packages to 
conform to global trends and demands- one such being the 
green economy (Nwosu & Pepple, 2016).

GIS is a sophisticated modern technology used for 
capturing, storing, displaying, analyzing and manipulating 
spatial data (Chalkias & Lasaridi, 2011). One key advantage 
of the platform is that it can combine the spatial datasets 
with non-spatial quantitative or qualitative data including 
quality and quantity of the resource, vector and raster data 
from satellite imagery, digital elevation model data, topo-
graphic data and operational environment. The data is then 
arranged into thematic layers represented by digital maps 
(Chalkias & Lasaridi, 2009). Quinta-Nova et al. (2017) ap-
plaud GIS’s embedded capability to provide a Multi Criteria 
Decision Analysis (MCDA) support based on spatial criteria 
(Quinta-Nova et al., 2017). In this case, a set of environ-
mental, economic and social criteria is defined, ranked and 
weighted, either using some logic system or the Analytic 
Hierarchy Process. (Quinta-Nova et al., 2017) The GIS can 
then select optimal sites for conversion or landfill sites 
using the ranked suitability criteria. For both biomass and 
SW management, objectives usually include minimizing 
distance, cost of transporting waste or biomass and GHG 
emissions, while other site related criteria like topography 
and legal requirements would also need to be factored in 
(Chalkias & Lasaridi, 2011; Eason & Cremaschi, 2014; You, 
Graziano, & Snyder, 2012). In some cases, only socio-eco-
nomic objectives are incorporated to obtain a wide array of 
potential sites, then some are eliminated based on other 
logical and legal criteria. Essentially, a GIS model not only 
acts as a digital data bank for spatial characteristics (e.g. 
quantities) of waste or biomass, but can manipulate that 
data at reduced time and cost to give best location and 
alternatives for processing or storage facility (Sufiyan et al., 
2015). Figure 2 exemplifies a stage wise approach to a GIS 
optimal site selection problem.

In a number of cases, the GIS is integrated with simu-
lation or optimization tools and can either be embedded 
in the overall program or be a precursor to predetermine 
the best candidate sites for subsequent SC optimization 

Decision level Strategic Tactical Operational

Description Long term and usually investment 
intensive decisions that can be 
revised after several years.

Address medium term decisions 
(usually between 6months to 1 
year) using guidelines provided by 
strategic decisions

Address short term decisions (weekly, 
daily and hourly)

Decision spheres and variables Conversion facilities- size and 
technology to be used; biomass 
supply network design & config-
uration; facility location; sourcing 
and procurement (including supply 
contracts);

Inventory planning & control: How 
much to harvest/collect and store; 
selection, timing and place of 
treatment technology.
Fleet management: transport 
mode, shipment size, routing & 
scheduling, outsourcing options.

Inventory planning & control: Daily 
inventory control and planning.

Fleet management: vehicle planning 
and scheduling

Literature (De Meyer et al., 2014; Iakovou et 
al., 2010) (Tembo et al., 2018)

(De Meyer et al., 2014; Iakovou et 
al., 2010) (Awudu & Zhang, 2012)

(De Meyer et al., 2014; Iakovou et al., 
2010) (Awudu & Zhang, 2012)

TABLE 1: SC decision levels (Charis, Danha, & Muzenda, 2018).
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(He-Lambert et al., 2018; Tan et al., 2014; Woo et al., 2018; 
Zhang et al., 2016).

A review of the use of GIS in routing optimization shows 
that this application is more prevalent in SW collection 
and transport problems rather than biomass SCs (Ahmed, 
2006). This is due to the weight placed on collection and 
transport in SW management as a tactical and operational 
problem; whereas the bioenergy system (most which are at 
planning stage), have a bias towards the strategic problem 
of facility sizing and conversion site selection (Ba et al., 
2016; Prins et al., 2015; Shi et al., 2008). Moreover, biomass 
sites are often in remote spaces where routes are not so 
many, defeating the purpose of ‘route optimization’. With 

the advent of the green economy, it is also likely that SW 
management problems will gravitate from the convention-
al landfill site selection and routing problems to also cover 
supply chain optimization for WtE plants.

Another interesting point is that the both site and route 
optimization problems can use tools like ArcGIS, Google 
Earth, Geographical Positioning Systems (GPS) and Goog-
le map for collection of spatial data (Ahmed et al., 2016; 
Sufiyan et al., 2015). For routing optimization like waste 
transport and collection it is more imperative to then use 
ArcGIS Network Analyst or a similar tool like GIS router 
to analyze and optimize the optimum route. In this case, 
there is need to supply the road network spatial data for the 

FIGURE 1: WtE and biomass supply chains. Colour filled blocks represent major operation nodes while unfilled blocks represent minor 
operations. Arrows denote possible transport links.

FIGURE 2: Application of GIS for site selection for landfill (also applicable to WtE and bioenergy facilities) (Chalkias & Lasaridi, 2011).
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study area (Chalkias & Lasaridi, 2009). Chalkias & Lasaridi 
(2009) explain that Network Analyst is an improved optimal 
path finding algorithm from the classic Dijkstra’s algorithm 
‘which solves the problem of optimal route selection on an 
undirected, non-negative weighted graph in a reasonable 
computational time’ (Chalkias & Lasaridi, 2009). They pres-
ent the data flow diagram of their methodology (Figure 3).

3.2 Findings on GIS Applications in MSW and bio-
mass SC optimization
3.2.1 MSW management 

Chalkias & Lasaridi (2011) presented a short literature 
review of two common optimization problems in SW man-
agement: Landfill/dumping site optimal location and route 
optimization. They highlighted that optimal site location of 
a landfill (applies to a bioenergy or WtE site) is complex, re-
quiring consideration of various technical, environmental, 
legal and socio-economic constraints (Chalkias & Lasaridi, 
2011).Tan et al. (2014) reiterated the increasing complexity 
and cost of MSW management, especially given the rapid 
socio-economic development and increased volumes of 
waste (Tan et al., 2014). Nwosu and Pepple (2016) added 
that the involvement of so many parameters make the em-
pirical process of selecting such sites complicated, costly 
and time consuming (Nwosu & Pepple, 2016). The weight 
of factors to be considered for bioenergy & WtE sites could 
be similar, however, they may contrast with traditional 
landfill sites since the latter span more environmental and 
socio-economic constraints. In their review, Chalkias & La-
saridi (2011) highlighted that in the landfill site evaluation 
problems in the last few years have used combinations 
of GIS with fuzzy systems, multicriteria decision analysis 
(also embedded within GIS suite), analytic hierarchy pro-
cess and factor spatial analysis, among other integrations 
(Chalkias & Lasaridi, 2011). Such a flexibility of GIS for in-
tegrations, enabling comprehensive spatial analyses, is a 
major advantage of GIS. Recent GIS applications for both 
bioenergy/WtE and landfill selections, however, use a ‘suit-
ability index’ to rank the most suitable sites, rather than bi-
nary outputs that would result from the above integrations 

(Celli et al., 2008; Chalkias & Lasaridi, 2011; Panichelli & 
Gnansounou, 2008; Voivontas et al., 2001).

Nwosu and Pepple (2016) looked into site selection 
criteria that meets stipulated standards for dumping sites 
that includes socio-economics, physical characteristics, 
and land-use factors in Nigeria (Nwosu & Pepple, 2016). 
They initially built a spatial database using datasets includ-
ing road network, topography & geology, GPS co-ordinates 
for current solid waste dumpsites, land use, water bodies 
and soil profile of study area. Ultimately, they carried out 
a spatial analysis using ArcGIS Network Analyst, spanning 
slope, Euclidean distance, reclassification and weighted 
overlay analysis. They used the Suitability Analysis Model 
Builder to identify optimal dumping sites (Nwosu & Pepple, 
2016).

Sufiyan et al. (2015) developed a GIS database to moni-
tor trends towards generation and disposal of waste, includ-
ing preferred dump sites in Nigeria (Sufiyan et al., 2015). 
The database was meant to inform planning processes in 
collecting such wastes to reduce aesthetic pollution and 
curb potential environmental health & pollution problems 
associated with disposal and burning of the waste. Sufiyan 
et al. (2015) and Nwosu & Pepple (2016) argued that SW 
waste accumulation in undesignated places is an acute 
problem in developing countries due to continued urban-
ization and the associated increase in consumption and 
production patterns (Nwosu & Pepple, 2016; Sufiyan et al., 
2015). Moreover, the proportion of MSW that has to be dis-
posed is higher in these developing countries due to low 
recycling and reuse capabilities (Nhubu et al., 2017; Nwo-
su & Pepple, 2016). As a result, local authorities have not 
been able to keep up with the disposal of such huge waste 
volumes, especially in densely populated areas (Ahmed, 
2006). Sufiyan et al. (2015) then recommended the use of 
GIS to determine the spatial & temporal quantities of major 
illegal dumpsites dotted around such areas them to help 
in planning, prioritization and mobilizing private and pub-
lic partnerships in the collection of the SW (Sufiyan et al., 
2015).

Tan et al. (2014) synthesized a model that ‘preferential-

FIGURE 3: Methodology for GIS model for use in optimal route selection (Chalkias & Lasaridi, 2009).
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ly utilizes the waste to produce energy to meet the target-
ed demand with the best mix of WtE technology, types of 
waste, power plant capacity, location and annual planning 
of WtE power plant construction’ for a Malaysian region in 
the years 2012-2025 (Tan et al., 2014). They integrated the 
GIS with a Mathematical model with an overall objective 
of minimizing the total cost of the WtE strategy. The GIS 
tool caterered for the location selection for the WtE facility 
which could either be a combined heat and power (CHP) 
plant or a Landfill gas (LFG) recovery plant. The suitabili-
ty criteria comprised maximum driving distance for dump 
trucks, minimum allowable distances from residential are-
as, proximity to customers and elevation above sea level. 
The mathematical model then factored in the technology 
selection and plant capacity, using cost factors supplied 
by literature for various technologies and plant sizes (Tan 
et al., 2014). The objective function for this module was to 
reduce the cost of producing electricity given constraints 
of feedstock resources availability, capacity demand, con-
struction lead time and location.

Chalkias & Lasaridi (2009) looked at a route optimiza-
tion challenge, mainly from a developed nation (Greece) 
viewpoint (Chalkias & Lasaridi, 2009). They asserted that 
the sustainable SW waste management paradigm as es-
poused by the EU waste policy, which requires source sep-
aration to recover materials and energy, will require more 
frugal waste management practices by local authorities 
(LAs) (Chalkias & Lasaridi, 2009). This is imperative since 
spatially distributed waste streams like construction and 
demolition waste, packaging waste, used tyres, biodegrad-
ables, electrical and electronic waste have target fractions 
set for recycling, recovery and landfills. Their research 
therefore identified GIS as the choice tool for analyzing 
such a complex spatial problem, where routing optimiza-
tion can minimize costs. They commented that, although 
waste sorting is not yet a focus area in developing nations, 
routing optimization can still deliver value owing to the 
dense populations and prevalence of open site dumping. 
The authors then built a model combining spatial/geo-
graphical data (road network, location of waste bins, land 
uses etc.) and non-spatial data; both obtained from ana-
logue maps, on-site data using GPS and digital data from 
Statistical offices. Chalkias & Lasaridi (2011) obtained an 
optimal route and bin reallocation model that offers sav-
ings in time (3-17%) and distance (5.5-12.5%) compared to 
the existing route (Chalkias & Lasaridi, 2011).

3.2.2 Biomass to bioenergy (BtB) supply chains
Panichelli and Gnansounou (2008) asserted that the 

profitability of BtB systems is highly geographically depend-
ent since upstream biomass SC accounts for a significant 
fraction of total bioenergy costs (Panichelli & Gnansounou, 
2008). They pointed out that the key objective is then, how 
to obtain sufficient biomass quantities above the minimum 
economic throughput of the bioenergy plant. A number of 
researchers in biomass SCs have therefore resorted to the 
use of GIS enhanced tools for optimal facility location at 
the strategic level and for route optimization at the tactical 
and operations level (Kinoshita et al., 2009; Voivontas et al., 
2001; Zhan et al., 2005).

He-Lambert et al. (2018) combined GIS with a Mixed 
Integer Linear Programming (MILP) model in a two-stage 
approach to identify feedstock supply, pre-treatment facil-
ities, and biorefinery locations with high spatial resolution 
scale to meet the annual biofuel production and demand 
goal for Tennessee, USA (He-Lambert et al., 2018). The first 
stage employs the GIS and determines the bio-refinery and 
feedstock while the second optimizes choice of harvesting 
options and the location of pre-treatment facilities. They 
highlighted that the advantage of using GIS only is that 
one can determine production potential and distribution of 
available feedstock, optimal biorefinery locations and mar-
ket distribution routes for the biofuel with no explicit ob-
jective functions or resource constraints. There would be 
limitations however in terms of model replicability, trans-
ferability and room to carry out economic analyses and 
simulations for alternative routes. An integration therefore 
brings in the GIS advantages and eliminates most limita-
tions (He-Lambert et al., 2018).

Woo et al. (2018) combined GIS with MCA and include 
a supply chain cost analysis for Tasmania, located in Aus-
tralia. They argued that a comprehensive SC design that 
will determine the optimal number, size and location of bio-
energy facilities should factor in both economic (especially 
transport), environmental and socio factors as depicted in 
Figure 4.

In another integration case, Zhang et al. (2016) com-
bined GIS with simulation and optimization tools where GIS 
was a precursor to select candidate biofuel facility loca-
tions using factors like accessibility to biomass, railway/
road transport network, labour availability and proximity to 
water bodies. The resulting candidates were then used as 
inputs for the simulations and optimization tools where the 
former would then be used to track flows within a given 
SC network, while the latter determines the optimal SC net-
work in terms of various costs (Zhang et al., 2016).

Koikai (2008) used GIS in siting analysis to identify 
potential locations for bioethanol processing plants using 
first-generation feed stocks in a Kenyan province (Koikai, 
2008). The author first defined and logically ranked the suit-
ability factors for the plants, including proximity to maize 
farms; access to major highways/roads or railways and 
access to utilities like water and electricity. Using acquired 
geo-referenced data, the author then produced vector maps 
representing suitability profiles for various sites according 
to each of the suitability factors. All the vector data was 
then converted to raster, reclassified then compared for 
suitability analysis using ArcGIS Spatial Analyst. The result 
was a map of several potential biofuels processing sites 
in several towns, which could be used by relevant stake-
holders in Kenya, considering other factors (Koikai, 2008).

Kinoshita et al. (2009) came up with a GIS database 
for a spatial evaluation of forest biomass usage. The data-
base model would reveal usage patterns and serve as an 
information repository for future decisions (Kinoshita et al., 
2009). Kanzial et al. (2009) integrated GIS and Multi Integer 
Linear Programming to model optimal material flows and 
subsequent plant production costs for different demand 
scenarios and supply options. They also demonstrated 
the differences between direct flow and flow via storage 
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(Kanzian et al., 2009). Panichelli and Gnansounou (2008) 
developed a methodology that integrates a GIS system 
with a biomass allocation algorithm to select suitable bi-
oenergy facilities (Panichelli & Gnansounou, 2008). Their 
model appealed as different from most facility site location 
problems since it considered a scenario where these sites 
could compete for the scarce biomass resource. Papado-
poulos and Katsigiannis (2002) developed a GIS tool to 
locate a conversion facility considering economic sustain-
ability (Papadopoulos & Katsigiannis, 2002).

4. OPPORTUNITIES FOR DEVELOPING NA-
TIONS: CASE OF AFRICA

Figure 5 illustrates that the uptake of GIS technologies 
is still very low for developing regions like South America 
and Africa. It also shows that the biggest end user is the 
government, mostly for demographic purposes, followed 
by the natural resources field. Moreover, the largest leap in 
market share by 2025 is also reflected by natural resourc-
es, where biomass occupies a very significant role. Since 

FIGURE 4: GIS methodology for selection of optimal facility sites, adapted from (Woo et al., 2018).

FIGURE 5: Uptake of GIS by various markets and prospects for growth (www.inkwoodresearch.com).
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the optimal use of natural resources is increasingly becom-
ing topical, it will be imminent that GIS will soon take centre 
stage in the planning and allocation of these resources.

On the other hand, most developing regions have ex-
perienced a recent rapid urban growth. In the case of Af-
rica mass urbanization since the 1960s resulted in the 
congestion of areas surrounding major cities and towns, 
resulting in the increased generation of waste (Matheri et 
al., 2016; Sufiyan et al., 2015). In the slum areas of some 
cities, the problem has degenerated into open dumping of 
SW. Giv en the booming populations and high urbanization 
rates in such developing regions, coupled with severe in-
frastructure and economic constraints, local authorities in 
these nations should consider optimal management using 
GIS tools. Integrated GIS technology has been recognized 
as one of the most promising approaches to automate the 
process of planning and management of waste manage-
ment, WtE and bioenergy SC systems (Celli et al., 2008; 
Chalkias & Lasaridi, 2011; Panichelli & Gnansounou, 2008). 
Clearly the need for cost-effectiveness cannot be restricted 
to developed countries for complex segregated waste col-
lection, treatment and recovery. A better opportunity in the 
green economy, beyond conventional landfill site location, 
would be planning and location of WtE and pre-treatment 
sites. These can be a good basis for comprehensive spatial 
databases revealing demographic data and waste disposal 
habits (Sufiyan et al., 2015). GIS tools would therefore help 
developing nations quantify the spatial and temporal char-
acteristics of waste and plan economically for WtE sites.

Africa in particular, along with other developing coun-
tries, also boasts of a large inventory of unutilized biomass 
due to expansive agricultural and forestry land and grow-
ing populations. The Stecher, Brosowski, & Thrän (2013), in 
an International Renewable Energy Agency (IRENA) report, 
stipulated that bioenergy is a strategic asset in the future 
of Africa, especially in the light of the fact that it comprises 
50% of Africa’s total primary energy supply (TPES)(Figure 
6) and more than 60% of Sub Saharan Africa (SSA)’s TPES 

(Stecher et al., 2013). Jingura et.al (2017) remarked that 
‘biomass is by far the most important renewable resource 
in SSA’(Jingura & Kamusoko, 2017). Estimates on Africa’s 
collective biomass potential are wide and varied, being 
classified largely as energy crops, forestry biomass (plan-
tations) then residues and organic waste. The estimates 
for 2020 are shown in Table 2.

Evidently, the reason why southern Africa would have 
such a high percentage share of biomass and waste (espe-
cially residues) is due to a relatively high abundance of land 
for energy and food crops, a relatively stable and conducive 
climate, a thriving agro-forestry industry and a fast grow-
ing population rate (Batidzirai et al., 2012; Stecher et al., 
2013; Von Maltitz & Setzkorn, 2013). Such fast expanding 
demographics lay a demand for increased agricultural and 
forestry products and consequently, the residues accumu-
lated from the activities (Gasparatos et al., 2015; Von Malt-
itz & Setzkorn, 2013),(Pradhan & Mbohwa, 2014). Given the 
spatial and temporal distribution of such residues, coupled 
with global trends, policies and technology advances that 
are supporting bioenergy, it is imminent that GIS will be 
widely adopted in the near future for spatial quantification 
and analyses.

While there is definitely an increase in waste due to pop-
ulation booms in developing nations, developed ones will 
also experience an increase in variety and possibly, quanti-
ties due to better lifestyles (Tan et al., 2014). Regardless of 
quantities of MSW, the major distinction between the devel-
oping and developed nations is the policies framework and 
legislation, which give developing nations pressure to com-

Energy Crops Forestry biomass
Residues (forestry 
& agriculture) and 
waste

Up to 13,900PJ/yr 
(IEA, 2010) 

1 billion tonnes 
annually (~9.4PJ/yr) 
(Cudjoe et al., 2015)

Just above 0.4billion 
tonnes per annum  
(Cudjoe et al., 2015)

TABLE 2: Estimates on Africa’s collective biomass potential.

FIGURE 6: Total Primary energy demand for energy sources in Africa (IEA 2010.
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ply in efficient ways (Sapp, 2017; World Energy Council, 
2016). Chalkias and Lasaridi (2009)’s account of the waste 
collection and sorting highlighted the EU waste policy that 
requires source separation and recovery of materials and 
energy (Chalkias & Lasaridi, 2009). Although waste sorting 
is not yet a focus area in developing nations, routing opti-
mization can still deliver value owing to the dense popu-
lations and prevalence of open site dumping (Chalkias & 
Lasaridi, 2009). Tan et al (2014)’s model for a developing 
nation (Malaysia), on the other hand, remains quite instruc-
tive in selecting the right mix of WtE technologies using 
various objectives, when there are limited resources (Tan 
et al., 2014). In this case, the WtE technologies could also 
include pyrolysis and gasification alternatives, not only LFG 
and CHP.

For BtB ventures, it is interesting to note that though 
not prevalent, cases of unutilized timber residues exist in 
developed nations as exemplified by the Tasmania, Austral-
ia case (Woo et al., 2018). Koikai (2008)’s study is a clas-
sic case of the use of GIS alone to identify all candidate 
biofuels processing sites by ranking according to certain 
suitability factors in Kenya (Koikai, 2008). Woo et al (2018), 
however, gave a good example of an even more compre-
hensive model integrated with simulation and optimization 
tools to meet various other constraints and objectives, 
which can only be expressed mathematically (Woo et al., 
2018). Moreover, the simulation tool can display results for 
various scenarios and when expressed graphically, it could 
be a better marketing tool in developing nations, where 
more rigour is require to break the ground and convince 
stakeholders. However, limitations in creating such a ro-
bust model may exist in terms of expertise and in some 
cases, inadequate computational resources in developing 
nations. This could be solved by having collaborations of 
researchers in developing nations with those in developed 
nations for skills transfer and sharing of robust resources. 
It will also be interesting to note that GIS models as de-
picted in Figure 4 and the mathematical superstructure will 
also vary between developing and developed nations due 
to differences in policies, legislation and socio-economic 
values or norms.

5. CONCLUSIONS
The review reveals a convergence of various issues like 

rapid population growth in developing nations, agriculture 
and forestry growth, advances in computational capabili-
ties and increased policy support for renewable energy 
schemes. All these constitute a good breeding ground for 
the application of GIS in creating and analyzing spatial da-
tabases with associated, relevant non-spatial attributes. 
There is indeed a strong case for WtE, bioenergy and im-
proved SW management ventures owing to the wide array 
of potential socio-economic benefits that could be reaped 
from them. Given the low energy density of waste and bio-
mass compared to fossil fuels, spatial distribution of supply 
points and variability of resource quantities, GIS becomes 
a tool of choice in the optimization of landfill/WtE/bioen-
ergy facility size, site location and routes. In developing 
nations, where the SW resource has been fast becoming a 

nuisance and biomass is very abundant, the opportunity for 
the application of GIS is vast and virgin. An accurate, well 
conceptualized and built model as exemplified by studies 
in this review can result in time and cost savings both at 
the planning and implementation stages. This study also 
shows that integrations of GIS with other mathematical 
optimization tools or simulations cover for the former’s in-
ability to also optimize on size and technology choice when 
there are resource constraints. It is also clear that all these 
SC models will be affected by the differences in policies 
and legislation between developed and developing nations 
and the latter may be affected by computational, human 
and software resources availability. This might warrant 
an in depth inquiry into the causes of slow uptake of such 
academic tools like GIS in developing nations to establish 
the weight of socio-economic or political factors. Perhaps, 
the bigger gap in literature is on models that will combine 
the upstream SC, midstream conversion and downstream 
distribution modules and be able to simulate various sce-
narios of plant location (determined using GIS), size and 
technology choice in one package. However, as Charis et 
al. discuss, such models would require a larger investment 
in time, a multidisciplinary approach and substantially big-
ger computational capacities (Charis et al., 2018).
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